光伏太阳能电池用高效卤化物钙钛矿Rb2NaTlBr6的理论研究

IF 6 2区 工程技术 Q2 ENERGY & FUELS
M. Agouri , H. Fatihi , H. Ouhenou , N. Khossossi , A. Abbassi , S. Taj , B. Manaut
{"title":"光伏太阳能电池用高效卤化物钙钛矿Rb2NaTlBr6的理论研究","authors":"M. Agouri ,&nbsp;H. Fatihi ,&nbsp;H. Ouhenou ,&nbsp;N. Khossossi ,&nbsp;A. Abbassi ,&nbsp;S. Taj ,&nbsp;B. Manaut","doi":"10.1016/j.solener.2025.113788","DOIUrl":null,"url":null,"abstract":"<div><div>The development of stable, non-toxic, and high-efficiency perovskite materials is critical for advancing next-generation photovoltaic technologies. While numerous halide double perovskites have been explored, many suffer from indirect band gaps or limited optoelectronic tunability. In this work, we employ first principles calculations to investigate the structural, electronic, and optical characteristics of the rubidium-based double perovskite <span><math><mrow><msub><mrow><mi>Rb</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>NaTlBr</mi></mrow><mrow><mn>6</mn></mrow></msub></mrow></math></span>. Our results reveal that the compound exhibits a direct band gap of 1.869 eV, along with strong, dynamic and thermodynamic stability. Notably, the application of tensile strain engineering systematically reduces the band gap to 1.374 eV, placing it within the optimal range for solar absorption and significantly enhancing its optoelectronic response. The material also demonstrates high absorption coefficients and favorable carrier effective masses. Importantly, the spectroscopic limited maximum efficiency (SLME) reaches 33% under 5% tensile strain, underscoring its photovoltaic potential. The findings suggest that strain engineered <span><math><mrow><msub><mrow><mi>Rb</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>NaTlBr</mi></mrow><mrow><mn>6</mn></mrow></msub></mrow></math></span> is promising, lead-free candidate for high-efficiency solar energy applications.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"300 ","pages":"Article 113788"},"PeriodicalIF":6.0000,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theoretical investigation of high-efficiency halide perovskite Rb2NaTlBr6 for photovoltaic solar cells\",\"authors\":\"M. Agouri ,&nbsp;H. Fatihi ,&nbsp;H. Ouhenou ,&nbsp;N. Khossossi ,&nbsp;A. Abbassi ,&nbsp;S. Taj ,&nbsp;B. Manaut\",\"doi\":\"10.1016/j.solener.2025.113788\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The development of stable, non-toxic, and high-efficiency perovskite materials is critical for advancing next-generation photovoltaic technologies. While numerous halide double perovskites have been explored, many suffer from indirect band gaps or limited optoelectronic tunability. In this work, we employ first principles calculations to investigate the structural, electronic, and optical characteristics of the rubidium-based double perovskite <span><math><mrow><msub><mrow><mi>Rb</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>NaTlBr</mi></mrow><mrow><mn>6</mn></mrow></msub></mrow></math></span>. Our results reveal that the compound exhibits a direct band gap of 1.869 eV, along with strong, dynamic and thermodynamic stability. Notably, the application of tensile strain engineering systematically reduces the band gap to 1.374 eV, placing it within the optimal range for solar absorption and significantly enhancing its optoelectronic response. The material also demonstrates high absorption coefficients and favorable carrier effective masses. Importantly, the spectroscopic limited maximum efficiency (SLME) reaches 33% under 5% tensile strain, underscoring its photovoltaic potential. The findings suggest that strain engineered <span><math><mrow><msub><mrow><mi>Rb</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>NaTlBr</mi></mrow><mrow><mn>6</mn></mrow></msub></mrow></math></span> is promising, lead-free candidate for high-efficiency solar energy applications.</div></div>\",\"PeriodicalId\":428,\"journal\":{\"name\":\"Solar Energy\",\"volume\":\"300 \",\"pages\":\"Article 113788\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0038092X25005511\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038092X25005511","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

开发稳定、无毒、高效的钙钛矿材料对于推进下一代光伏技术至关重要。虽然已经探索了许多卤化物双钙钛矿,但许多卤化物双钙钛矿存在间接带隙或有限的光电可调性。在这项工作中,我们采用第一性原理计算来研究铷基双钙钛矿Rb2NaTlBr6的结构、电子和光学特性。结果表明,该化合物具有1.869 eV的直接带隙,具有较强的动力学和热力学稳定性。值得注意的是,拉伸应变工程的应用系统地将带隙减小到1.374 eV,使其处于太阳能吸收的最佳范围内,并显着提高了其光电响应。该材料还具有较高的吸收系数和良好的载流子有效质量。重要的是,在5%的拉伸应变下,光谱限制最大效率(SLME)达到33%,强调了其光伏潜力。研究结果表明,菌株工程的Rb2NaTlBr6是高效太阳能应用的有前途的无铅候选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Theoretical investigation of high-efficiency halide perovskite Rb2NaTlBr6 for photovoltaic solar cells
The development of stable, non-toxic, and high-efficiency perovskite materials is critical for advancing next-generation photovoltaic technologies. While numerous halide double perovskites have been explored, many suffer from indirect band gaps or limited optoelectronic tunability. In this work, we employ first principles calculations to investigate the structural, electronic, and optical characteristics of the rubidium-based double perovskite Rb2NaTlBr6. Our results reveal that the compound exhibits a direct band gap of 1.869 eV, along with strong, dynamic and thermodynamic stability. Notably, the application of tensile strain engineering systematically reduces the band gap to 1.374 eV, placing it within the optimal range for solar absorption and significantly enhancing its optoelectronic response. The material also demonstrates high absorption coefficients and favorable carrier effective masses. Importantly, the spectroscopic limited maximum efficiency (SLME) reaches 33% under 5% tensile strain, underscoring its photovoltaic potential. The findings suggest that strain engineered Rb2NaTlBr6 is promising, lead-free candidate for high-efficiency solar energy applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar Energy
Solar Energy 工程技术-能源与燃料
CiteScore
13.90
自引率
9.00%
发文量
0
审稿时长
47 days
期刊介绍: Solar Energy welcomes manuscripts presenting information not previously published in journals on any aspect of solar energy research, development, application, measurement or policy. The term "solar energy" in this context includes the indirect uses such as wind energy and biomass
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信