Marcela Souza-Neves , Jorge Luis Pórfido , Martina Crispo , Alejo Menchaca
{"title":"羊受精卵电穿孔作为显微注射的替代方法,用于生成CRISPR/Cas基因组编辑模型","authors":"Marcela Souza-Neves , Jorge Luis Pórfido , Martina Crispo , Alejo Menchaca","doi":"10.1016/j.theriogenology.2025.117603","DOIUrl":null,"url":null,"abstract":"<div><div>Zygote microinjection is considered the most suitable technique to introduce CRISPR/Cas9 reagents for efficient genome editing in livestock. In this study, zygote electroporation was evaluated as an alternative to microinjection for CRISPR/Cas9-mediated genome editing in sheep. Four experiments were conducted on 3548 cumulus-oocyte complexes. Acid Tyrode's solution (AT) was used to partially degrade the zona pellucida (ZP) to improve reagent entry, resulting in ZP thinning with longer AT exposure (<em>P</em> < 0.05). Although early embryo development was impaired by AT exposure (<em>P</em> < 0.05), blastocyst rates were similar across all groups by day 8. Electroporation conditions were optimized by testing pulse length (1 or 3 ms), with the best results from 6 pulses of 20 V for 3 ms with AT during 60 s. Electroporation with 500 ng/μL Cas9 and 300 ng/μL sgRNA with AT during 60 s achieved a 38.5 % mutation rate. When compared with conventional microinjection, electroporation had higher developmental rates but a lower mutation rate (21.4 % vs. 60.0 %; <em>P</em> < 0.05). These findings suggest that electroporation is a viable, cost-effective technique for genome editing in sheep. Nevertheless, further research will be required to fine-tune electroporation conditions and enhance efficiency in terms of mutation rate.</div></div>","PeriodicalId":23131,"journal":{"name":"Theriogenology","volume":"248 ","pages":"Article 117603"},"PeriodicalIF":2.5000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electroporation of sheep zygotes as an alternative to microinjection for the generation of CRISPR/Cas genome edited models\",\"authors\":\"Marcela Souza-Neves , Jorge Luis Pórfido , Martina Crispo , Alejo Menchaca\",\"doi\":\"10.1016/j.theriogenology.2025.117603\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Zygote microinjection is considered the most suitable technique to introduce CRISPR/Cas9 reagents for efficient genome editing in livestock. In this study, zygote electroporation was evaluated as an alternative to microinjection for CRISPR/Cas9-mediated genome editing in sheep. Four experiments were conducted on 3548 cumulus-oocyte complexes. Acid Tyrode's solution (AT) was used to partially degrade the zona pellucida (ZP) to improve reagent entry, resulting in ZP thinning with longer AT exposure (<em>P</em> < 0.05). Although early embryo development was impaired by AT exposure (<em>P</em> < 0.05), blastocyst rates were similar across all groups by day 8. Electroporation conditions were optimized by testing pulse length (1 or 3 ms), with the best results from 6 pulses of 20 V for 3 ms with AT during 60 s. Electroporation with 500 ng/μL Cas9 and 300 ng/μL sgRNA with AT during 60 s achieved a 38.5 % mutation rate. When compared with conventional microinjection, electroporation had higher developmental rates but a lower mutation rate (21.4 % vs. 60.0 %; <em>P</em> < 0.05). These findings suggest that electroporation is a viable, cost-effective technique for genome editing in sheep. Nevertheless, further research will be required to fine-tune electroporation conditions and enhance efficiency in terms of mutation rate.</div></div>\",\"PeriodicalId\":23131,\"journal\":{\"name\":\"Theriogenology\",\"volume\":\"248 \",\"pages\":\"Article 117603\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theriogenology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0093691X25003292\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"REPRODUCTIVE BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theriogenology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0093691X25003292","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"REPRODUCTIVE BIOLOGY","Score":null,"Total":0}
Electroporation of sheep zygotes as an alternative to microinjection for the generation of CRISPR/Cas genome edited models
Zygote microinjection is considered the most suitable technique to introduce CRISPR/Cas9 reagents for efficient genome editing in livestock. In this study, zygote electroporation was evaluated as an alternative to microinjection for CRISPR/Cas9-mediated genome editing in sheep. Four experiments were conducted on 3548 cumulus-oocyte complexes. Acid Tyrode's solution (AT) was used to partially degrade the zona pellucida (ZP) to improve reagent entry, resulting in ZP thinning with longer AT exposure (P < 0.05). Although early embryo development was impaired by AT exposure (P < 0.05), blastocyst rates were similar across all groups by day 8. Electroporation conditions were optimized by testing pulse length (1 or 3 ms), with the best results from 6 pulses of 20 V for 3 ms with AT during 60 s. Electroporation with 500 ng/μL Cas9 and 300 ng/μL sgRNA with AT during 60 s achieved a 38.5 % mutation rate. When compared with conventional microinjection, electroporation had higher developmental rates but a lower mutation rate (21.4 % vs. 60.0 %; P < 0.05). These findings suggest that electroporation is a viable, cost-effective technique for genome editing in sheep. Nevertheless, further research will be required to fine-tune electroporation conditions and enhance efficiency in terms of mutation rate.
期刊介绍:
Theriogenology provides an international forum for researchers, clinicians, and industry professionals in animal reproductive biology. This acclaimed journal publishes articles on a wide range of topics in reproductive and developmental biology, of domestic mammal, avian, and aquatic species as well as wild species which are the object of veterinary care in research or conservation programs.