Solomon English , Sofiya Fedosyuk , Francisco Orliacq , Vincent Tem , William Taylor , Nawsad Alam , Zhi Q. Xiang , Luke Thorley , César López-Camacho , Hildegund C. Ertl , Alexander D. Douglas
{"title":"狂犬病糖蛋白工程提高稳定性和表达","authors":"Solomon English , Sofiya Fedosyuk , Francisco Orliacq , Vincent Tem , William Taylor , Nawsad Alam , Zhi Q. Xiang , Luke Thorley , César López-Camacho , Hildegund C. Ertl , Alexander D. Douglas","doi":"10.1016/j.vaccine.2025.127541","DOIUrl":null,"url":null,"abstract":"<div><div>Current rabies vaccines require multiple doses and are relatively expensive, limiting their accessibility. Novel low-cost vaccines capable of inducing a protective antibody response against the rabies virus glycoprotein (RVG) are therefore desirable. Structure-guided engineering of the antigen may enhance its qualitative or quantitative immunogenicity, as may transgene cassette optimisation in the case of vectored vaccines. We investigated the potential of these approaches for the design of improved rabies vaccines.</div><div>We evaluated twelve candidate cassette designs. While codon optimisation enhanced expression <em>in vitro,</em> it did not translate into improved immunogenicity. Co-expression or RVG with rabies matrix protein (RVM) did not detectably affect expression or immunogenicity. Inserting a C-terminal trimerisation domain was detrimental to expression <em>in vitro</em> and did not improve immunogenicity compared to the wild-type comparator. We screened 72 mutant constructs for <em>in vitro</em> expression and pre-fusion stabilisation. Several mutants enhanced expression and/or pre-fusion stability at low pH. Combination of the previously reported H270P mutation with the H419L substitution achieved enhanced stability. An L271Q + H419L double mutant achieved the greatest positive effect upon expression. Neither of double mutants improved immunogenicity compared to wild-type RVG when tested using an mRNA vaccine platform.</div><div>These mutant constructs may be of value for protein subunit vaccines, but full length wild-type RVG may be sufficiently conformationally stable and well-expressed for optimal immunogenicity of adenovirus and mRNA vaccines in mice.</div></div>","PeriodicalId":23491,"journal":{"name":"Vaccine","volume":"62 ","pages":"Article 127541"},"PeriodicalIF":4.5000,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rabies glycoprotein engineering for improved stability and expression\",\"authors\":\"Solomon English , Sofiya Fedosyuk , Francisco Orliacq , Vincent Tem , William Taylor , Nawsad Alam , Zhi Q. Xiang , Luke Thorley , César López-Camacho , Hildegund C. Ertl , Alexander D. Douglas\",\"doi\":\"10.1016/j.vaccine.2025.127541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Current rabies vaccines require multiple doses and are relatively expensive, limiting their accessibility. Novel low-cost vaccines capable of inducing a protective antibody response against the rabies virus glycoprotein (RVG) are therefore desirable. Structure-guided engineering of the antigen may enhance its qualitative or quantitative immunogenicity, as may transgene cassette optimisation in the case of vectored vaccines. We investigated the potential of these approaches for the design of improved rabies vaccines.</div><div>We evaluated twelve candidate cassette designs. While codon optimisation enhanced expression <em>in vitro,</em> it did not translate into improved immunogenicity. Co-expression or RVG with rabies matrix protein (RVM) did not detectably affect expression or immunogenicity. Inserting a C-terminal trimerisation domain was detrimental to expression <em>in vitro</em> and did not improve immunogenicity compared to the wild-type comparator. We screened 72 mutant constructs for <em>in vitro</em> expression and pre-fusion stabilisation. Several mutants enhanced expression and/or pre-fusion stability at low pH. Combination of the previously reported H270P mutation with the H419L substitution achieved enhanced stability. An L271Q + H419L double mutant achieved the greatest positive effect upon expression. Neither of double mutants improved immunogenicity compared to wild-type RVG when tested using an mRNA vaccine platform.</div><div>These mutant constructs may be of value for protein subunit vaccines, but full length wild-type RVG may be sufficiently conformationally stable and well-expressed for optimal immunogenicity of adenovirus and mRNA vaccines in mice.</div></div>\",\"PeriodicalId\":23491,\"journal\":{\"name\":\"Vaccine\",\"volume\":\"62 \",\"pages\":\"Article 127541\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vaccine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0264410X25008382\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vaccine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0264410X25008382","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Rabies glycoprotein engineering for improved stability and expression
Current rabies vaccines require multiple doses and are relatively expensive, limiting their accessibility. Novel low-cost vaccines capable of inducing a protective antibody response against the rabies virus glycoprotein (RVG) are therefore desirable. Structure-guided engineering of the antigen may enhance its qualitative or quantitative immunogenicity, as may transgene cassette optimisation in the case of vectored vaccines. We investigated the potential of these approaches for the design of improved rabies vaccines.
We evaluated twelve candidate cassette designs. While codon optimisation enhanced expression in vitro, it did not translate into improved immunogenicity. Co-expression or RVG with rabies matrix protein (RVM) did not detectably affect expression or immunogenicity. Inserting a C-terminal trimerisation domain was detrimental to expression in vitro and did not improve immunogenicity compared to the wild-type comparator. We screened 72 mutant constructs for in vitro expression and pre-fusion stabilisation. Several mutants enhanced expression and/or pre-fusion stability at low pH. Combination of the previously reported H270P mutation with the H419L substitution achieved enhanced stability. An L271Q + H419L double mutant achieved the greatest positive effect upon expression. Neither of double mutants improved immunogenicity compared to wild-type RVG when tested using an mRNA vaccine platform.
These mutant constructs may be of value for protein subunit vaccines, but full length wild-type RVG may be sufficiently conformationally stable and well-expressed for optimal immunogenicity of adenovirus and mRNA vaccines in mice.
期刊介绍:
Vaccine is unique in publishing the highest quality science across all disciplines relevant to the field of vaccinology - all original article submissions across basic and clinical research, vaccine manufacturing, history, public policy, behavioral science and ethics, social sciences, safety, and many other related areas are welcomed. The submission categories as given in the Guide for Authors indicate where we receive the most papers. Papers outside these major areas are also welcome and authors are encouraged to contact us with specific questions.