Feng He , Wenting Zhang , Xiamin Hao , Xinyu Li , Ruifen Nie , Rui Jin
{"title":"极化AlGaN/GaN结构场极板对4H-SiC肖特基势垒二极管电性能的影响","authors":"Feng He , Wenting Zhang , Xiamin Hao , Xinyu Li , Ruifen Nie , Rui Jin","doi":"10.1016/j.mejo.2025.106814","DOIUrl":null,"url":null,"abstract":"<div><div>By employing advanced physical models with the help of TCAD, we studied the impact of polarized AlGaN/GaN field plates on 4H-SiC Schottky barrier diodes (SBDs). In a traditional 4H-SiC SBD with a p-SiC field ring, the strongest electric field occurs at both the junction interface and the edge of the field ring, leading to premature breakdown and increased leakage current under reverse bias conditions. The proposed polarized AlGaN/GaN structure-based field plate evens out the electric field distribution between the AlGaN/GaN layer and the field plate dielectric layer, thereby enhancing the breakdown voltage (BV) of the device. Additionally, an optimum design strategy is detailed in the paper, using the length of the field plate (<em>L</em><sub>FP</sub>) and thickness of the field plate dielectric layer (<em>T</em><sub>FP</sub>) as control variables. Furthermore, this study also examines how surface defects and bulk traps would affect the device characteristics and discusses the physical mechanisms. It is found that donor-type traps would strongly add to device performance degradation.</div></div>","PeriodicalId":49818,"journal":{"name":"Microelectronics Journal","volume":"164 ","pages":"Article 106814"},"PeriodicalIF":1.9000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of polarized AlGaN/GaN structure-based field plate on the electric properties of a 4H-SiC Schottky barrier diode\",\"authors\":\"Feng He , Wenting Zhang , Xiamin Hao , Xinyu Li , Ruifen Nie , Rui Jin\",\"doi\":\"10.1016/j.mejo.2025.106814\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>By employing advanced physical models with the help of TCAD, we studied the impact of polarized AlGaN/GaN field plates on 4H-SiC Schottky barrier diodes (SBDs). In a traditional 4H-SiC SBD with a p-SiC field ring, the strongest electric field occurs at both the junction interface and the edge of the field ring, leading to premature breakdown and increased leakage current under reverse bias conditions. The proposed polarized AlGaN/GaN structure-based field plate evens out the electric field distribution between the AlGaN/GaN layer and the field plate dielectric layer, thereby enhancing the breakdown voltage (BV) of the device. Additionally, an optimum design strategy is detailed in the paper, using the length of the field plate (<em>L</em><sub>FP</sub>) and thickness of the field plate dielectric layer (<em>T</em><sub>FP</sub>) as control variables. Furthermore, this study also examines how surface defects and bulk traps would affect the device characteristics and discusses the physical mechanisms. It is found that donor-type traps would strongly add to device performance degradation.</div></div>\",\"PeriodicalId\":49818,\"journal\":{\"name\":\"Microelectronics Journal\",\"volume\":\"164 \",\"pages\":\"Article 106814\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microelectronics Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1879239125002632\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronics Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1879239125002632","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Effect of polarized AlGaN/GaN structure-based field plate on the electric properties of a 4H-SiC Schottky barrier diode
By employing advanced physical models with the help of TCAD, we studied the impact of polarized AlGaN/GaN field plates on 4H-SiC Schottky barrier diodes (SBDs). In a traditional 4H-SiC SBD with a p-SiC field ring, the strongest electric field occurs at both the junction interface and the edge of the field ring, leading to premature breakdown and increased leakage current under reverse bias conditions. The proposed polarized AlGaN/GaN structure-based field plate evens out the electric field distribution between the AlGaN/GaN layer and the field plate dielectric layer, thereby enhancing the breakdown voltage (BV) of the device. Additionally, an optimum design strategy is detailed in the paper, using the length of the field plate (LFP) and thickness of the field plate dielectric layer (TFP) as control variables. Furthermore, this study also examines how surface defects and bulk traps would affect the device characteristics and discusses the physical mechanisms. It is found that donor-type traps would strongly add to device performance degradation.
期刊介绍:
Published since 1969, the Microelectronics Journal is an international forum for the dissemination of research and applications of microelectronic systems, circuits, and emerging technologies. Papers published in the Microelectronics Journal have undergone peer review to ensure originality, relevance, and timeliness. The journal thus provides a worldwide, regular, and comprehensive update on microelectronic circuits and systems.
The Microelectronics Journal invites papers describing significant research and applications in all of the areas listed below. Comprehensive review/survey papers covering recent developments will also be considered. The Microelectronics Journal covers circuits and systems. This topic includes but is not limited to: Analog, digital, mixed, and RF circuits and related design methodologies; Logic, architectural, and system level synthesis; Testing, design for testability, built-in self-test; Area, power, and thermal analysis and design; Mixed-domain simulation and design; Embedded systems; Non-von Neumann computing and related technologies and circuits; Design and test of high complexity systems integration; SoC, NoC, SIP, and NIP design and test; 3-D integration design and analysis; Emerging device technologies and circuits, such as FinFETs, SETs, spintronics, SFQ, MTJ, etc.
Application aspects such as signal and image processing including circuits for cryptography, sensors, and actuators including sensor networks, reliability and quality issues, and economic models are also welcome.