Fan Li, Shang Sun, Lina Ma, Wenjing Zhang, Min Zhou, Yu Fu, Hengrui Guo, Xueying Su, Jinliang Shi, Hao Luo, Yang Yang
{"title":"Fe - V2O5 - n/rGO异质结构中的铁调节D -能带中心通过最佳的碘吸附-解吸动力学实现超长循环锌-碘电池","authors":"Fan Li, Shang Sun, Lina Ma, Wenjing Zhang, Min Zhou, Yu Fu, Hengrui Guo, Xueying Su, Jinliang Shi, Hao Luo, Yang Yang","doi":"10.1002/adfm.202512876","DOIUrl":null,"url":null,"abstract":"The intrinsically low electrical conductivity of elemental iodine and its slow redox kinetics represent two significant obstacles that hinder the commercialization of aqueous zinc‐iodine batteries. These challenges can be addressed by modulating the adsorption‐desorption equilibrium of iodide ions in the active material. This study presented a synergistic strategy of “Electronic Modulation” and “Phase Transition Engineering” to optimize the catalytic adsorption‐desorption dynamics. A dual‐designed Fe ions doped VO<jats:sub>2‐</jats:sub><jats:italic><jats:sub>x</jats:sub></jats:italic> heterostructure anchored on reduced graphene oxide (Fe‐VO<jats:sub>2‐</jats:sub><jats:italic><jats:sub>x</jats:sub></jats:italic>/rGO) is demonstrated to synchronously adjust iodine adsorption and boost redox kinetics. The Fe‐induced electronic structure modulation elevated the d‐band center of vanadium, creating catalytic sites to promote the desorption of iodide ions and facilitate their diffusion. Concurrently, the phase transition from VO<jats:sub>2‐</jats:sub><jats:italic><jats:sub>x</jats:sub></jats:italic> to V<jats:sub>2</jats:sub>O<jats:sub>5‐</jats:sub><jats:italic><jats:sub>n</jats:sub></jats:italic> within the heterostructure establishes a 3D conductive network, synergizing with rGO to ensure rapid ion/electron transport. This “adsorption‐catalysis‐transport” collaborative mechanism enabled the Fe‐VO<jats:sub>2‐</jats:sub><jats:italic><jats:sub>x</jats:sub></jats:italic>/rGO cathode to achieve an ultrahigh capacity retention of 81.48% after 60,000 cycles at 20 A g<jats:sup>−1</jats:sup>, surpassing state‐of‐the‐art zinc‐iodine systems. The work provides a paradigm for manipulating interfacial dynamics through electronic and crystallographic dual regulation in conversion‐type batteries.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"21 1","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Iron‐Regulated D‐Band Center in Fe‐V2O5‐n/rGO Heterostructures Enables Ultralong‐Cycling Zinc‐Iodine Batteries via Optimal Iodine Adsorption‐Desorption Dynamics\",\"authors\":\"Fan Li, Shang Sun, Lina Ma, Wenjing Zhang, Min Zhou, Yu Fu, Hengrui Guo, Xueying Su, Jinliang Shi, Hao Luo, Yang Yang\",\"doi\":\"10.1002/adfm.202512876\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The intrinsically low electrical conductivity of elemental iodine and its slow redox kinetics represent two significant obstacles that hinder the commercialization of aqueous zinc‐iodine batteries. These challenges can be addressed by modulating the adsorption‐desorption equilibrium of iodide ions in the active material. This study presented a synergistic strategy of “Electronic Modulation” and “Phase Transition Engineering” to optimize the catalytic adsorption‐desorption dynamics. A dual‐designed Fe ions doped VO<jats:sub>2‐</jats:sub><jats:italic><jats:sub>x</jats:sub></jats:italic> heterostructure anchored on reduced graphene oxide (Fe‐VO<jats:sub>2‐</jats:sub><jats:italic><jats:sub>x</jats:sub></jats:italic>/rGO) is demonstrated to synchronously adjust iodine adsorption and boost redox kinetics. The Fe‐induced electronic structure modulation elevated the d‐band center of vanadium, creating catalytic sites to promote the desorption of iodide ions and facilitate their diffusion. Concurrently, the phase transition from VO<jats:sub>2‐</jats:sub><jats:italic><jats:sub>x</jats:sub></jats:italic> to V<jats:sub>2</jats:sub>O<jats:sub>5‐</jats:sub><jats:italic><jats:sub>n</jats:sub></jats:italic> within the heterostructure establishes a 3D conductive network, synergizing with rGO to ensure rapid ion/electron transport. This “adsorption‐catalysis‐transport” collaborative mechanism enabled the Fe‐VO<jats:sub>2‐</jats:sub><jats:italic><jats:sub>x</jats:sub></jats:italic>/rGO cathode to achieve an ultrahigh capacity retention of 81.48% after 60,000 cycles at 20 A g<jats:sup>−1</jats:sup>, surpassing state‐of‐the‐art zinc‐iodine systems. The work provides a paradigm for manipulating interfacial dynamics through electronic and crystallographic dual regulation in conversion‐type batteries.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":19.0000,\"publicationDate\":\"2025-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202512876\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202512876","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
单质碘固有的低电导率及其缓慢的氧化还原动力学是阻碍水锌碘电池商业化的两个重要障碍。这些挑战可以通过调节活性物质中碘离子的吸附-解吸平衡来解决。本研究提出了“电子调制”和“相变工程”的协同策略来优化催化吸附-解吸动力学。双设计的铁离子掺杂VO2‐x异质结构锚定在还原氧化石墨烯(Fe‐VO2‐x/rGO)上,可以同步调节碘的吸附和提高氧化还原动力学。铁诱导的电子结构调制提高了钒的d波段中心,形成催化位点,促进碘离子的解吸和扩散。同时,异质结构中从VO2‐x到V2O5‐n的相变建立了一个3D导电网络,与还原氧化石墨烯协同作用,确保了离子/电子的快速传递。这种“吸附-催化-运输”协同机制使Fe - VO2 - x/rGO阴极在20 A g−1的条件下,经过6万次循环后,其容量保持率达到81.48%,超过了目前最先进的锌-碘系统。这项工作为在转换型电池中通过电子和晶体双调节来操纵界面动力学提供了一个范例。
Iron‐Regulated D‐Band Center in Fe‐V2O5‐n/rGO Heterostructures Enables Ultralong‐Cycling Zinc‐Iodine Batteries via Optimal Iodine Adsorption‐Desorption Dynamics
The intrinsically low electrical conductivity of elemental iodine and its slow redox kinetics represent two significant obstacles that hinder the commercialization of aqueous zinc‐iodine batteries. These challenges can be addressed by modulating the adsorption‐desorption equilibrium of iodide ions in the active material. This study presented a synergistic strategy of “Electronic Modulation” and “Phase Transition Engineering” to optimize the catalytic adsorption‐desorption dynamics. A dual‐designed Fe ions doped VO2‐x heterostructure anchored on reduced graphene oxide (Fe‐VO2‐x/rGO) is demonstrated to synchronously adjust iodine adsorption and boost redox kinetics. The Fe‐induced electronic structure modulation elevated the d‐band center of vanadium, creating catalytic sites to promote the desorption of iodide ions and facilitate their diffusion. Concurrently, the phase transition from VO2‐x to V2O5‐n within the heterostructure establishes a 3D conductive network, synergizing with rGO to ensure rapid ion/electron transport. This “adsorption‐catalysis‐transport” collaborative mechanism enabled the Fe‐VO2‐x/rGO cathode to achieve an ultrahigh capacity retention of 81.48% after 60,000 cycles at 20 A g−1, surpassing state‐of‐the‐art zinc‐iodine systems. The work provides a paradigm for manipulating interfacial dynamics through electronic and crystallographic dual regulation in conversion‐type batteries.
期刊介绍:
Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week.
Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.