具有双位点氧化路径的高熵RuO2催化剂用于持久的酸性析氧反应

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Fangren Qian, Dengfeng Cao, Shuangming Chen, Yalong Yuan, Kai Chen, Peter Joseph Chimtali, Hengjie Liu, Wei Jiang, Beibei Sheng, Luocai Yi, Jiabao Huang, Chengsi Hu, Huxu Lei, Xiaojun Wu, Zhenhai Wen, Qingjun Chen, Li Song
{"title":"具有双位点氧化路径的高熵RuO2催化剂用于持久的酸性析氧反应","authors":"Fangren Qian, Dengfeng Cao, Shuangming Chen, Yalong Yuan, Kai Chen, Peter Joseph Chimtali, Hengjie Liu, Wei Jiang, Beibei Sheng, Luocai Yi, Jiabao Huang, Chengsi Hu, Huxu Lei, Xiaojun Wu, Zhenhai Wen, Qingjun Chen, Li Song","doi":"10.1038/s41467-025-61763-5","DOIUrl":null,"url":null,"abstract":"<p>Developing durable acidic oxygen evolution reaction catalysts is critical for industrial proton exchange membrane water electrolyzers. We incorporate high-entropy atoms (Co, Ni, Cu, Mn, Sm) into RuO<sub>2</sub> (RuO<sub>2</sub>-HEAE) via annealing, achieving remarkably high stability (&gt;1500 h at 100 mA cm<sup>−</sup><sup>2</sup>). In situ differential electrochemical mass spectrometry and <i>operando</i> Attenuated Total Reflection Surface-Enhanced Infrared Absorption Spectroscopy reveal RuO<sub>2</sub>-HEAE follows a dual-site oxide path mechanism instead of the conventional adsorbate evolution mechanism. Quantitative Fourier-transformed extended X-ray absorption fine structure fitting and density functional theory calculations show this mechanistic shift stems from an elongated Ru-M distance in second coordination shell of RuO<sub>2</sub>-HEAE, enabling direct O-O coupling. This OPM-type catalyst delivers ~1500 h of stable operation at 1 A cm<sup>−</sup><sup>2</sup> and 50 °C, demonstrating superior durability versus most reported RuO<sub>2</sub>-based catalysts. This work provides fundamental insights for designing highly stable proton exchange membrane water electrolysis.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"57 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-entropy RuO2 catalyst with dual-site oxide path for durable acidic oxygen evolution reaction\",\"authors\":\"Fangren Qian, Dengfeng Cao, Shuangming Chen, Yalong Yuan, Kai Chen, Peter Joseph Chimtali, Hengjie Liu, Wei Jiang, Beibei Sheng, Luocai Yi, Jiabao Huang, Chengsi Hu, Huxu Lei, Xiaojun Wu, Zhenhai Wen, Qingjun Chen, Li Song\",\"doi\":\"10.1038/s41467-025-61763-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Developing durable acidic oxygen evolution reaction catalysts is critical for industrial proton exchange membrane water electrolyzers. We incorporate high-entropy atoms (Co, Ni, Cu, Mn, Sm) into RuO<sub>2</sub> (RuO<sub>2</sub>-HEAE) via annealing, achieving remarkably high stability (&gt;1500 h at 100 mA cm<sup>−</sup><sup>2</sup>). In situ differential electrochemical mass spectrometry and <i>operando</i> Attenuated Total Reflection Surface-Enhanced Infrared Absorption Spectroscopy reveal RuO<sub>2</sub>-HEAE follows a dual-site oxide path mechanism instead of the conventional adsorbate evolution mechanism. Quantitative Fourier-transformed extended X-ray absorption fine structure fitting and density functional theory calculations show this mechanistic shift stems from an elongated Ru-M distance in second coordination shell of RuO<sub>2</sub>-HEAE, enabling direct O-O coupling. This OPM-type catalyst delivers ~1500 h of stable operation at 1 A cm<sup>−</sup><sup>2</sup> and 50 °C, demonstrating superior durability versus most reported RuO<sub>2</sub>-based catalysts. This work provides fundamental insights for designing highly stable proton exchange membrane water electrolysis.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2025-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-61763-5\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-61763-5","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

研制耐用的酸性析氧反应催化剂是工业质子交换膜水电解槽的关键。我们通过退火将高熵原子(Co, Ni, Cu, Mn, Sm)加入到RuO2 (RuO2- heae)中,获得了非常高的稳定性(在100 mA cm−2下1500小时)。原位差分电化学质谱分析和operando衰减全反射表面增强红外吸收光谱分析表明,RuO2-HEAE遵循双点氧化路径机制,而不是传统的吸附质演化机制。定量傅里叶变换扩展x射线吸收精细结构拟合和密度泛函理论计算表明,这种机制转变源于RuO2-HEAE的第二配位层中Ru-M距离的延长,从而实现了直接的O-O耦合。这种opm型催化剂在1 A cm−2和50°C下可稳定运行约1500小时,与大多数报道的基于ruo2的催化剂相比,具有优越的耐久性。这项工作为设计高稳定的质子交换膜水电解提供了基础见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

High-entropy RuO2 catalyst with dual-site oxide path for durable acidic oxygen evolution reaction

High-entropy RuO2 catalyst with dual-site oxide path for durable acidic oxygen evolution reaction

Developing durable acidic oxygen evolution reaction catalysts is critical for industrial proton exchange membrane water electrolyzers. We incorporate high-entropy atoms (Co, Ni, Cu, Mn, Sm) into RuO2 (RuO2-HEAE) via annealing, achieving remarkably high stability (>1500 h at 100 mA cm2). In situ differential electrochemical mass spectrometry and operando Attenuated Total Reflection Surface-Enhanced Infrared Absorption Spectroscopy reveal RuO2-HEAE follows a dual-site oxide path mechanism instead of the conventional adsorbate evolution mechanism. Quantitative Fourier-transformed extended X-ray absorption fine structure fitting and density functional theory calculations show this mechanistic shift stems from an elongated Ru-M distance in second coordination shell of RuO2-HEAE, enabling direct O-O coupling. This OPM-type catalyst delivers ~1500 h of stable operation at 1 A cm2 and 50 °C, demonstrating superior durability versus most reported RuO2-based catalysts. This work provides fundamental insights for designing highly stable proton exchange membrane water electrolysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信