优化氮化硅纤维和氮化硼界面,提高氮化硅/氮化硼复合材料的力学性能和抗热震性

IF 6.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Ningning Dong, Bangjun Li, Yue He, Liuxin Chao, Yun Zhu, Lu Liu, Jiongjie Liu, Guobing Ying
{"title":"优化氮化硅纤维和氮化硼界面,提高氮化硅/氮化硼复合材料的力学性能和抗热震性","authors":"Ningning Dong, Bangjun Li, Yue He, Liuxin Chao, Yun Zhu, Lu Liu, Jiongjie Liu, Guobing Ying","doi":"10.1016/j.jallcom.2025.182573","DOIUrl":null,"url":null,"abstract":"This work demonstrates a strategic approach to enhance the thermomechanical performance of Si<sub>3</sub>N<sub>4</sub>/BN composites through interface optimization and control of powder particles. By adding the MgO sintering additive at BN interfaces coupled with 0.5 μm Si<sub>3</sub>N<sub>4</sub> fiber precursor, we achieved full densification with mechanical properties, attaining a density of 3.19<!-- --> <!-- -->g·cm<sup>-3</sup>, the remarkable flexural strength of 627.36<!-- --> <!-- -->MPa, and fracture toughness of 13.48<!-- --> <!-- -->MPa·m<sup>1/2</sup>. The composites exhibit exceptional thermal shock resistance, retaining 586.19<!-- --> <!-- -->MPa (93.44% retention) after 1000 ℃ thermal shocking, facilitated by in situ formation of a continuous SiO<sub>2</sub> glass barrier that effectively prevents oxidation. Intriguingly, the residual strength shows a trend of first decreasing and then increasing with the increase of Δ<em>T</em>. At Δ<em>T</em>=1500 ℃, the composite maintains the residual strength of 469.46<!-- --> <!-- -->MPa (74.83% retention), outperforming conventional monolithic ceramics through a self-healing mechanism enabled by viscous flow of the glass phase. Microstructural evolution analysis coupled with fracture morphology establishes direct correlations between the interface, mechanical properties, and thermal-shock resistance. These findings provide fundamental insights into designing composites with excellent thermal-shock resistance for ultrahigh-temperature structural applications.","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"57 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of Si3N4 fiber and BN interface for high mechanical properties and thermal-shock resistance of Si3N4/BN composites\",\"authors\":\"Ningning Dong, Bangjun Li, Yue He, Liuxin Chao, Yun Zhu, Lu Liu, Jiongjie Liu, Guobing Ying\",\"doi\":\"10.1016/j.jallcom.2025.182573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work demonstrates a strategic approach to enhance the thermomechanical performance of Si<sub>3</sub>N<sub>4</sub>/BN composites through interface optimization and control of powder particles. By adding the MgO sintering additive at BN interfaces coupled with 0.5 μm Si<sub>3</sub>N<sub>4</sub> fiber precursor, we achieved full densification with mechanical properties, attaining a density of 3.19<!-- --> <!-- -->g·cm<sup>-3</sup>, the remarkable flexural strength of 627.36<!-- --> <!-- -->MPa, and fracture toughness of 13.48<!-- --> <!-- -->MPa·m<sup>1/2</sup>. The composites exhibit exceptional thermal shock resistance, retaining 586.19<!-- --> <!-- -->MPa (93.44% retention) after 1000 ℃ thermal shocking, facilitated by in situ formation of a continuous SiO<sub>2</sub> glass barrier that effectively prevents oxidation. Intriguingly, the residual strength shows a trend of first decreasing and then increasing with the increase of Δ<em>T</em>. At Δ<em>T</em>=1500 ℃, the composite maintains the residual strength of 469.46<!-- --> <!-- -->MPa (74.83% retention), outperforming conventional monolithic ceramics through a self-healing mechanism enabled by viscous flow of the glass phase. Microstructural evolution analysis coupled with fracture morphology establishes direct correlations between the interface, mechanical properties, and thermal-shock resistance. These findings provide fundamental insights into designing composites with excellent thermal-shock resistance for ultrahigh-temperature structural applications.\",\"PeriodicalId\":344,\"journal\":{\"name\":\"Journal of Alloys and Compounds\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Alloys and Compounds\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jallcom.2025.182573\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jallcom.2025.182573","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究展示了一种通过界面优化和粉末颗粒控制来提高氮化硅/氮化硼复合材料热机械性能的策略方法。通过在BN界面添加MgO烧结添加剂,再配以0.5 μm Si3N4纤维前驱体,实现了具有良好力学性能的完全致密化,密度达到3.19 g·cm-3,抗弯强度达到627.36 MPa,断裂韧性达到13.48 MPa·m1/2。复合材料表现出优异的抗热冲击性能,在1000℃热冲击后保持586.19 MPa(93.44%保留率),这是由于原位形成的连续SiO2玻璃屏障有效地防止了氧化。有趣的是,随着ΔT的增加,残余强度呈现先减小后增大的趋势。在ΔT=1500℃时,复合材料的残余强度为469.46 MPa(保留率为74.83%),通过玻璃相的粘性流动实现自修复机制,优于传统的单片陶瓷。结合断口形貌的显微组织演化分析建立了界面、力学性能和抗热震性能之间的直接关联。这些发现为设计具有优异抗热冲击性能的超高温结构复合材料提供了基础见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Optimization of Si3N4 fiber and BN interface for high mechanical properties and thermal-shock resistance of Si3N4/BN composites

Optimization of Si3N4 fiber and BN interface for high mechanical properties and thermal-shock resistance of Si3N4/BN composites
This work demonstrates a strategic approach to enhance the thermomechanical performance of Si3N4/BN composites through interface optimization and control of powder particles. By adding the MgO sintering additive at BN interfaces coupled with 0.5 μm Si3N4 fiber precursor, we achieved full densification with mechanical properties, attaining a density of 3.19 g·cm-3, the remarkable flexural strength of 627.36 MPa, and fracture toughness of 13.48 MPa·m1/2. The composites exhibit exceptional thermal shock resistance, retaining 586.19 MPa (93.44% retention) after 1000 ℃ thermal shocking, facilitated by in situ formation of a continuous SiO2 glass barrier that effectively prevents oxidation. Intriguingly, the residual strength shows a trend of first decreasing and then increasing with the increase of ΔT. At ΔT=1500 ℃, the composite maintains the residual strength of 469.46 MPa (74.83% retention), outperforming conventional monolithic ceramics through a self-healing mechanism enabled by viscous flow of the glass phase. Microstructural evolution analysis coupled with fracture morphology establishes direct correlations between the interface, mechanical properties, and thermal-shock resistance. These findings provide fundamental insights into designing composites with excellent thermal-shock resistance for ultrahigh-temperature structural applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Alloys and Compounds
Journal of Alloys and Compounds 工程技术-材料科学:综合
CiteScore
11.10
自引率
14.50%
发文量
5146
审稿时长
67 days
期刊介绍: The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信