MAB相过渡金属的价电子工程:al层刻蚀的DFT计算

IF 6.9 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Jun Ji , Xiaoman Jiang , Xinyi Hong , Lei Wang , Yujie Li , Bingbing Zhou , Mengyu Zhu , Yangqun Zhu , Mingling Li , Huamin Gao , Dechun Li
{"title":"MAB相过渡金属的价电子工程:al层刻蚀的DFT计算","authors":"Jun Ji ,&nbsp;Xiaoman Jiang ,&nbsp;Xinyi Hong ,&nbsp;Lei Wang ,&nbsp;Yujie Li ,&nbsp;Bingbing Zhou ,&nbsp;Mengyu Zhu ,&nbsp;Yangqun Zhu ,&nbsp;Mingling Li ,&nbsp;Huamin Gao ,&nbsp;Dechun Li","doi":"10.1016/j.apsusc.2025.164156","DOIUrl":null,"url":null,"abstract":"<div><div>This study employs density functional theory (DFT) to investigate the etching mechanisms of M<sub>2</sub>AlB<sub>2</sub> (M = Sc, Ti, V, Cr, Zr, Mo, Hf, W) phases by analyzing their electronic structure, vacancy dynamics, and bonding interactions. Key findings reveal that Al-layer etching is governed by the thermodynamic and kinetic stability of Al vacancies, with lower formation energies and migration barriers correlating to preferential Al removal. Electronic structure analyses including density of states (DOS) and charge density difference (CDD) demonstrate weaker electron redistribution at M−Al interfaces compared to stronger M−B bonds. Local partial density of states (LPDOS) and hybridization trends further rationalize bonding strength variations: M−Al interactions weaken when hybridized states approach the Fermi level, while increased valence electrons in transition metals stabilize these bonds by shifting hybrid states to lower energies. These insights establish a multiscale framework linking electronic structure, vacancy dynamics, and etching selectivity.</div></div>","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"712 ","pages":"Article 164156"},"PeriodicalIF":6.9000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Valence electron engineering of transition metals in MAB phases: a DFT calculation for Al-layer etching\",\"authors\":\"Jun Ji ,&nbsp;Xiaoman Jiang ,&nbsp;Xinyi Hong ,&nbsp;Lei Wang ,&nbsp;Yujie Li ,&nbsp;Bingbing Zhou ,&nbsp;Mengyu Zhu ,&nbsp;Yangqun Zhu ,&nbsp;Mingling Li ,&nbsp;Huamin Gao ,&nbsp;Dechun Li\",\"doi\":\"10.1016/j.apsusc.2025.164156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study employs density functional theory (DFT) to investigate the etching mechanisms of M<sub>2</sub>AlB<sub>2</sub> (M = Sc, Ti, V, Cr, Zr, Mo, Hf, W) phases by analyzing their electronic structure, vacancy dynamics, and bonding interactions. Key findings reveal that Al-layer etching is governed by the thermodynamic and kinetic stability of Al vacancies, with lower formation energies and migration barriers correlating to preferential Al removal. Electronic structure analyses including density of states (DOS) and charge density difference (CDD) demonstrate weaker electron redistribution at M−Al interfaces compared to stronger M−B bonds. Local partial density of states (LPDOS) and hybridization trends further rationalize bonding strength variations: M−Al interactions weaken when hybridized states approach the Fermi level, while increased valence electrons in transition metals stabilize these bonds by shifting hybrid states to lower energies. These insights establish a multiscale framework linking electronic structure, vacancy dynamics, and etching selectivity.</div></div>\",\"PeriodicalId\":247,\"journal\":{\"name\":\"Applied Surface Science\",\"volume\":\"712 \",\"pages\":\"Article 164156\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Surface Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169433225018719\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169433225018719","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用密度泛函理论(DFT),通过分析M2AlB2 (M = Sc, Ti, V, Cr, Zr, Mo, Hf, W)相的电子结构、空位动力学和成键相互作用,研究了M2AlB2 (M = Sc, Ti, V, Cr, Zr, Mo, Hf, W)相的刻蚀机理。关键发现表明,Al层蚀刻受Al空位的热力学和动力学稳定性控制,较低的形成能和迁移障碍与优先去除Al有关。电子结构分析(包括态密度(DOS)和电荷密度差(CDD))表明,与强M - B键相比,M - Al界面上的电子重分布较弱。局域偏态密度(LPDOS)和杂化趋势进一步合理化了键强度变化:当杂化态接近费米能级时,M−Al相互作用减弱,而过渡金属中增加的价电子通过将杂化态转移到较低能量来稳定这些键。这些见解建立了连接电子结构、空位动力学和蚀刻选择性的多尺度框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Valence electron engineering of transition metals in MAB phases: a DFT calculation for Al-layer etching

Valence electron engineering of transition metals in MAB phases: a DFT calculation for Al-layer etching

Valence electron engineering of transition metals in MAB phases: a DFT calculation for Al-layer etching
This study employs density functional theory (DFT) to investigate the etching mechanisms of M2AlB2 (M = Sc, Ti, V, Cr, Zr, Mo, Hf, W) phases by analyzing their electronic structure, vacancy dynamics, and bonding interactions. Key findings reveal that Al-layer etching is governed by the thermodynamic and kinetic stability of Al vacancies, with lower formation energies and migration barriers correlating to preferential Al removal. Electronic structure analyses including density of states (DOS) and charge density difference (CDD) demonstrate weaker electron redistribution at M−Al interfaces compared to stronger M−B bonds. Local partial density of states (LPDOS) and hybridization trends further rationalize bonding strength variations: M−Al interactions weaken when hybridized states approach the Fermi level, while increased valence electrons in transition metals stabilize these bonds by shifting hybrid states to lower energies. These insights establish a multiscale framework linking electronic structure, vacancy dynamics, and etching selectivity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Surface Science
Applied Surface Science 工程技术-材料科学:膜
CiteScore
12.50
自引率
7.50%
发文量
3393
审稿时长
67 days
期刊介绍: Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信