{"title":"用于高效硬件贝叶斯神经网络的铁电NAND","authors":"Minsuk Song, Ryun-Han Koo, Jangsaeng Kim, Chang-Hyeon Han, Jiyong Yim, Jonghyun Ko, Sijung Yoo, Duk-hyun Choe, Sangwook Kim, Wonjun Shin, Daewoong Kwon","doi":"10.1038/s41467-025-61980-y","DOIUrl":null,"url":null,"abstract":"<p>The rapid advancement of artificial intelligence has enabled breakthroughs in diverse fields, including autonomous systems and medical diagnostics. However, conventional deterministic neural networks struggle to capture uncertainty, limiting their reliability when handling real-world data, which are often noisy, imbalanced, or scarce. Bayesian neural networks address this limitation by representing weights as probabilistic distributions, allowing for natural uncertainty quantification and improved robustness. Despite their advantages, hardware-based implementations face significant challenges due to the difficulty of independently tuning both the mean and variance of weight distributions. Herein, we propose a 3D ferroelectric NAND-based Bayesian neural network system that leverages incremental step pulse programming technology to achieve efficient and scalable probabilistic weight control. The page-level programming capabilities and intrinsic device-to-device variations enable gaussian weight distributions in a single programming step, without structural modifications. By modulating the incremental step pulse programming voltage step, we achieve precise weight distribution control. The proposed system demonstrates successful uncertainty estimation, enhanced energy efficiency, and robustness to external noise for medical images.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"14 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ferroelectric NAND for efficient hardware bayesian neural networks\",\"authors\":\"Minsuk Song, Ryun-Han Koo, Jangsaeng Kim, Chang-Hyeon Han, Jiyong Yim, Jonghyun Ko, Sijung Yoo, Duk-hyun Choe, Sangwook Kim, Wonjun Shin, Daewoong Kwon\",\"doi\":\"10.1038/s41467-025-61980-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The rapid advancement of artificial intelligence has enabled breakthroughs in diverse fields, including autonomous systems and medical diagnostics. However, conventional deterministic neural networks struggle to capture uncertainty, limiting their reliability when handling real-world data, which are often noisy, imbalanced, or scarce. Bayesian neural networks address this limitation by representing weights as probabilistic distributions, allowing for natural uncertainty quantification and improved robustness. Despite their advantages, hardware-based implementations face significant challenges due to the difficulty of independently tuning both the mean and variance of weight distributions. Herein, we propose a 3D ferroelectric NAND-based Bayesian neural network system that leverages incremental step pulse programming technology to achieve efficient and scalable probabilistic weight control. The page-level programming capabilities and intrinsic device-to-device variations enable gaussian weight distributions in a single programming step, without structural modifications. By modulating the incremental step pulse programming voltage step, we achieve precise weight distribution control. The proposed system demonstrates successful uncertainty estimation, enhanced energy efficiency, and robustness to external noise for medical images.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-61980-y\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-61980-y","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Ferroelectric NAND for efficient hardware bayesian neural networks
The rapid advancement of artificial intelligence has enabled breakthroughs in diverse fields, including autonomous systems and medical diagnostics. However, conventional deterministic neural networks struggle to capture uncertainty, limiting their reliability when handling real-world data, which are often noisy, imbalanced, or scarce. Bayesian neural networks address this limitation by representing weights as probabilistic distributions, allowing for natural uncertainty quantification and improved robustness. Despite their advantages, hardware-based implementations face significant challenges due to the difficulty of independently tuning both the mean and variance of weight distributions. Herein, we propose a 3D ferroelectric NAND-based Bayesian neural network system that leverages incremental step pulse programming technology to achieve efficient and scalable probabilistic weight control. The page-level programming capabilities and intrinsic device-to-device variations enable gaussian weight distributions in a single programming step, without structural modifications. By modulating the incremental step pulse programming voltage step, we achieve precise weight distribution control. The proposed system demonstrates successful uncertainty estimation, enhanced energy efficiency, and robustness to external noise for medical images.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.