{"title":"基于推拉式光纤传感器的高灵敏度可穿戴手套。","authors":"Qi Xia, Xiaotong Zhang, Hongye Wang, Libo Yuan, Tingting Yuan","doi":"10.3390/bios15070414","DOIUrl":null,"url":null,"abstract":"<p><p>Hand motion monitoring plays a vital role in medical rehabilitation, sports training, and human-computer interaction. High-sensitivity wearable biosensors are essential for accurate gesture recognition and precise motion analysis. In this work, we propose a high-sensitivity wearable glove based on a push-pull optical fiber sensor, designed to enhance the sensitivity and accuracy of hand motion biosensing. The sensor employs diagonal core reflectors fabricated at the tip of a four-core fiber, which interconnect symmetric fiber channels to form a push-pull sensing mechanism. This mechanism induces opposite wavelength shifts in fiber Bragg gratings positioned symmetrically under bending, effectively decoupling temperature and strain effects while significantly enhancing bending sensitivity. Experimental results demonstrate superior bending-sensing performance, establishing a solid foundation for high-precision gesture recognition. The integrated wearable glove offers a compact, flexible structure and straightforward fabrication process, with promising applications in precision medicine, intelligent human-machine interaction, virtual reality, and continuous health monitoring.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 7","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12294063/pdf/","citationCount":"0","resultStr":"{\"title\":\"Wearable Glove with Enhanced Sensitivity Based on Push-Pull Optical Fiber Sensor.\",\"authors\":\"Qi Xia, Xiaotong Zhang, Hongye Wang, Libo Yuan, Tingting Yuan\",\"doi\":\"10.3390/bios15070414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hand motion monitoring plays a vital role in medical rehabilitation, sports training, and human-computer interaction. High-sensitivity wearable biosensors are essential for accurate gesture recognition and precise motion analysis. In this work, we propose a high-sensitivity wearable glove based on a push-pull optical fiber sensor, designed to enhance the sensitivity and accuracy of hand motion biosensing. The sensor employs diagonal core reflectors fabricated at the tip of a four-core fiber, which interconnect symmetric fiber channels to form a push-pull sensing mechanism. This mechanism induces opposite wavelength shifts in fiber Bragg gratings positioned symmetrically under bending, effectively decoupling temperature and strain effects while significantly enhancing bending sensitivity. Experimental results demonstrate superior bending-sensing performance, establishing a solid foundation for high-precision gesture recognition. The integrated wearable glove offers a compact, flexible structure and straightforward fabrication process, with promising applications in precision medicine, intelligent human-machine interaction, virtual reality, and continuous health monitoring.</p>\",\"PeriodicalId\":48608,\"journal\":{\"name\":\"Biosensors-Basel\",\"volume\":\"15 7\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12294063/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosensors-Basel\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bios15070414\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios15070414","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Wearable Glove with Enhanced Sensitivity Based on Push-Pull Optical Fiber Sensor.
Hand motion monitoring plays a vital role in medical rehabilitation, sports training, and human-computer interaction. High-sensitivity wearable biosensors are essential for accurate gesture recognition and precise motion analysis. In this work, we propose a high-sensitivity wearable glove based on a push-pull optical fiber sensor, designed to enhance the sensitivity and accuracy of hand motion biosensing. The sensor employs diagonal core reflectors fabricated at the tip of a four-core fiber, which interconnect symmetric fiber channels to form a push-pull sensing mechanism. This mechanism induces opposite wavelength shifts in fiber Bragg gratings positioned symmetrically under bending, effectively decoupling temperature and strain effects while significantly enhancing bending sensitivity. Experimental results demonstrate superior bending-sensing performance, establishing a solid foundation for high-precision gesture recognition. The integrated wearable glove offers a compact, flexible structure and straightforward fabrication process, with promising applications in precision medicine, intelligent human-machine interaction, virtual reality, and continuous health monitoring.
Biosensors-BaselBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍:
Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.