用银纳米晶增强的免疫传感器用于片上前列腺特异性抗原检测。

IF 5.6 3区 工程技术 Q1 CHEMISTRY, ANALYTICAL
Timothy A Okhai, Kefilwe V Mokwebo, Marlon Oranzie, Usisipho Feleni, Lukas W Snyman
{"title":"用银纳米晶增强的免疫传感器用于片上前列腺特异性抗原检测。","authors":"Timothy A Okhai, Kefilwe V Mokwebo, Marlon Oranzie, Usisipho Feleni, Lukas W Snyman","doi":"10.3390/bios15070428","DOIUrl":null,"url":null,"abstract":"<p><p>An electrochemical immunosensor for the quantification of prostate-specific antigens (PSAs) using silver nanocrystals (AgNCs) is reported. The silver nanocrystals were synthesized using a conventional citrate reduction protocol. The silver nanocrystals were characterized using scanning electron microscopy (SEM) and field effect scanning electron microscopy (FESEM), X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), Fourier-transform infrared spectroscopy (FTIR), UV-Vis spectroscopy, and small-angle X-ray scattering (SAXS). The proposed immunosensor was fabricated on a glassy carbon electrode (GCE), sequentially, by drop-coating AgNCs, the electro-deposition of EDC-NHS, the immobilization of anti-PSA antibody (Ab), and dropping of bovine serum albumin (BSA) to prevent non-specific binding sites. Each stage of the fabrication process was characterized by cyclic voltammetry (CV). Using square wave voltammetry (SWV), the proposed immunosensor displayed high sensitivity in detecting PSA over a concentration range of 1 to 10 ng/mL with a detection limit of 1.14 ng/mL and R<sup>2</sup> of 0.99%. The immunosensor was selective in the presence of interfering substances like glucose, urea, L-cysteine, and alpha-methylacyl-CoA racemase (AMACR) and it showed good stability and repeatability. These results compare favourably with some previously reported results on similar or related technologies for PSA detection.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 7","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Immunosensor Enhanced with Silver Nanocrystals for On-Chip Prostate-Specific Antigen Detection.\",\"authors\":\"Timothy A Okhai, Kefilwe V Mokwebo, Marlon Oranzie, Usisipho Feleni, Lukas W Snyman\",\"doi\":\"10.3390/bios15070428\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>An electrochemical immunosensor for the quantification of prostate-specific antigens (PSAs) using silver nanocrystals (AgNCs) is reported. The silver nanocrystals were synthesized using a conventional citrate reduction protocol. The silver nanocrystals were characterized using scanning electron microscopy (SEM) and field effect scanning electron microscopy (FESEM), X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), Fourier-transform infrared spectroscopy (FTIR), UV-Vis spectroscopy, and small-angle X-ray scattering (SAXS). The proposed immunosensor was fabricated on a glassy carbon electrode (GCE), sequentially, by drop-coating AgNCs, the electro-deposition of EDC-NHS, the immobilization of anti-PSA antibody (Ab), and dropping of bovine serum albumin (BSA) to prevent non-specific binding sites. Each stage of the fabrication process was characterized by cyclic voltammetry (CV). Using square wave voltammetry (SWV), the proposed immunosensor displayed high sensitivity in detecting PSA over a concentration range of 1 to 10 ng/mL with a detection limit of 1.14 ng/mL and R<sup>2</sup> of 0.99%. The immunosensor was selective in the presence of interfering substances like glucose, urea, L-cysteine, and alpha-methylacyl-CoA racemase (AMACR) and it showed good stability and repeatability. These results compare favourably with some previously reported results on similar or related technologies for PSA detection.</p>\",\"PeriodicalId\":48608,\"journal\":{\"name\":\"Biosensors-Basel\",\"volume\":\"15 7\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosensors-Basel\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bios15070428\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios15070428","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文报道了一种利用银纳米晶体(agnc)定量检测前列腺特异性抗原(psa)的电化学免疫传感器。采用传统的柠檬酸还原工艺合成了银纳米晶体。采用扫描电镜(SEM)和场效应扫描电镜(FESEM)、x射线衍射(XRD)、高分辨率透射电镜(HRTEM)、傅里叶变换红外光谱(FTIR)、紫外可见光谱(UV-Vis)和小角x射线散射(SAXS)对银纳米晶体进行了表征。通过滴涂agnc,电沉积EDC-NHS,固定抗psa抗体(Ab),滴注牛血清白蛋白(BSA)来阻止非特异性结合位点,在玻璃碳电极(GCE)上制备了该免疫传感器。用循环伏安法(CV)表征了制备过程的每个阶段。采用方波伏安法(SWV),该免疫传感器在1 ~ 10 ng/mL浓度范围内检测PSA具有较高的灵敏度,检出限为1.14 ng/mL, R2为0.99%。该免疫传感器对葡萄糖、尿素、l-半胱氨酸、α -甲基酰基辅酶a消旋酶(AMACR)等干扰物具有选择性,具有良好的稳定性和重复性。这些结果与先前报道的一些类似或相关PSA检测技术的结果相比较有利。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Immunosensor Enhanced with Silver Nanocrystals for On-Chip Prostate-Specific Antigen Detection.

An electrochemical immunosensor for the quantification of prostate-specific antigens (PSAs) using silver nanocrystals (AgNCs) is reported. The silver nanocrystals were synthesized using a conventional citrate reduction protocol. The silver nanocrystals were characterized using scanning electron microscopy (SEM) and field effect scanning electron microscopy (FESEM), X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), Fourier-transform infrared spectroscopy (FTIR), UV-Vis spectroscopy, and small-angle X-ray scattering (SAXS). The proposed immunosensor was fabricated on a glassy carbon electrode (GCE), sequentially, by drop-coating AgNCs, the electro-deposition of EDC-NHS, the immobilization of anti-PSA antibody (Ab), and dropping of bovine serum albumin (BSA) to prevent non-specific binding sites. Each stage of the fabrication process was characterized by cyclic voltammetry (CV). Using square wave voltammetry (SWV), the proposed immunosensor displayed high sensitivity in detecting PSA over a concentration range of 1 to 10 ng/mL with a detection limit of 1.14 ng/mL and R2 of 0.99%. The immunosensor was selective in the presence of interfering substances like glucose, urea, L-cysteine, and alpha-methylacyl-CoA racemase (AMACR) and it showed good stability and repeatability. These results compare favourably with some previously reported results on similar or related technologies for PSA detection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biosensors-Basel
Biosensors-Basel Biochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍: Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信