{"title":"唾液α-淀粉酶即时诊断的统一YOLOv8方法","authors":"Youssef Amin, Paola Cecere, Pier Paolo Pompa","doi":"10.3390/bios15070421","DOIUrl":null,"url":null,"abstract":"<p><p>Salivary α-amylase (sAA) is a widely recognized biomarker for stress and autonomic nervous system activity. However, conventional enzymatic assays used to quantify sAA are limited by time-consuming, lab-based protocols. In this study, we present a portable, AI-driven point-of-care system for automated sAA classification via colorimetric image analysis. The system integrates SCHEDA, a custom-designed imaging device providing and ensuring standardized illumination, with a deep learning pipeline optimized for mobile deployment. Two classification strategies were compared: (1) a modular YOLOv4-CNN architecture and (2) a unified YOLOv8 segmentation-classification model. The models were trained on a dataset of 1024 images representing an eight-class classification problem corresponding to distinct sAA concentrations. The results show that red-channel input significantly enhances YOLOv4-CNN performance, achieving 93.5% accuracy compared to 88% with full RGB images. The YOLOv8 model further outperformed both approaches, reaching 96.5% accuracy while simplifying the pipeline and enabling real-time, on-device inference. The system was deployed and validated on a smartphone, demonstrating consistent results in live tests. This work highlights a robust, low-cost platform capable of delivering fast, reliable, and scalable salivary diagnostics for mobile health applications.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 7","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Unified YOLOv8 Approach for Point-of-Care Diagnostics of Salivary <i>α</i>-Amylase.\",\"authors\":\"Youssef Amin, Paola Cecere, Pier Paolo Pompa\",\"doi\":\"10.3390/bios15070421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Salivary α-amylase (sAA) is a widely recognized biomarker for stress and autonomic nervous system activity. However, conventional enzymatic assays used to quantify sAA are limited by time-consuming, lab-based protocols. In this study, we present a portable, AI-driven point-of-care system for automated sAA classification via colorimetric image analysis. The system integrates SCHEDA, a custom-designed imaging device providing and ensuring standardized illumination, with a deep learning pipeline optimized for mobile deployment. Two classification strategies were compared: (1) a modular YOLOv4-CNN architecture and (2) a unified YOLOv8 segmentation-classification model. The models were trained on a dataset of 1024 images representing an eight-class classification problem corresponding to distinct sAA concentrations. The results show that red-channel input significantly enhances YOLOv4-CNN performance, achieving 93.5% accuracy compared to 88% with full RGB images. The YOLOv8 model further outperformed both approaches, reaching 96.5% accuracy while simplifying the pipeline and enabling real-time, on-device inference. The system was deployed and validated on a smartphone, demonstrating consistent results in live tests. This work highlights a robust, low-cost platform capable of delivering fast, reliable, and scalable salivary diagnostics for mobile health applications.</p>\",\"PeriodicalId\":48608,\"journal\":{\"name\":\"Biosensors-Basel\",\"volume\":\"15 7\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosensors-Basel\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bios15070421\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios15070421","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
A Unified YOLOv8 Approach for Point-of-Care Diagnostics of Salivary α-Amylase.
Salivary α-amylase (sAA) is a widely recognized biomarker for stress and autonomic nervous system activity. However, conventional enzymatic assays used to quantify sAA are limited by time-consuming, lab-based protocols. In this study, we present a portable, AI-driven point-of-care system for automated sAA classification via colorimetric image analysis. The system integrates SCHEDA, a custom-designed imaging device providing and ensuring standardized illumination, with a deep learning pipeline optimized for mobile deployment. Two classification strategies were compared: (1) a modular YOLOv4-CNN architecture and (2) a unified YOLOv8 segmentation-classification model. The models were trained on a dataset of 1024 images representing an eight-class classification problem corresponding to distinct sAA concentrations. The results show that red-channel input significantly enhances YOLOv4-CNN performance, achieving 93.5% accuracy compared to 88% with full RGB images. The YOLOv8 model further outperformed both approaches, reaching 96.5% accuracy while simplifying the pipeline and enabling real-time, on-device inference. The system was deployed and validated on a smartphone, demonstrating consistent results in live tests. This work highlights a robust, low-cost platform capable of delivering fast, reliable, and scalable salivary diagnostics for mobile health applications.
Biosensors-BaselBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍:
Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.