中国老年抑郁症患者轻度认知障碍的预测模型。

IF 1.1 Q4 PSYCHIATRY
Yu Zhu, Jinhan Nan, Tian Gao, Jia Li, Nini Shi, Yunhang Wang, Xuedan Wang, Yuxia Ma
{"title":"中国老年抑郁症患者轻度认知障碍的预测模型。","authors":"Yu Zhu, Jinhan Nan, Tian Gao, Jia Li, Nini Shi, Yunhang Wang, Xuedan Wang, Yuxia Ma","doi":"10.1007/s40211-025-00533-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Older adults with depression are at an increased risk of developing cognitive decline. This study aimed to develop and validate a risk prediction model for mild cognitive impairment (MCI) in older adults with depression in China.</p><p><strong>Methods: </strong>This study used 2020 China Health and Retirement Longitudinal Study (CHARLS) data, splitting the cohort (70:30) into training and validation sets. Least absolute shrinkage and selection operator (LASSO) regression with ten-fold cross-validation identified key predictors, and binary logistic regression examined MCI risk factors in older adults with depression. A nomogram was developed, with receiver operating characteristic (ROC) curves assessing discrimination, calibration curves for accuracy, and decision curve analysis (DCA) for clinical benefit.</p><p><strong>Results: </strong>This study included 3512 older adults with depression, 640 (19.9%) of whom had MCI. Binary logistic regression identified age, education level, marital status, residence, pain, internet use, and social participation as significant predictors of MCI in older adults with depression, and these factors were used to construct a nomogram model with good consistency and predictive accuracy. The area under the curve (AUC) values of the predictive model in the training set and internal validation set were 0.78 (95% confidence interval [CI] 0.75-0.80) and 0.75 (95% CI 0.71-0.78); the Hosmer-Lemeshow test results were P = 0.916 and P = 0.749, respectively. ROC analysis of the prediction model showed strong discriminatory ability, calibration curves demonstrated significant agreement between the nomogram model and actual observations, and DCA confirmed a favorable net benefit.</p><p><strong>Conclusion: </strong>The nomogram constructed in this study is a promising and convenient tool for evaluating the risk of MCI among older adults with depression, facilitating early identification of high-risk individuals and enabling timely intervention.</p>","PeriodicalId":44560,"journal":{"name":"NEUROPSYCHIATRIE","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predictive model for mild cognitive impairment in older Chinese adults with depression.\",\"authors\":\"Yu Zhu, Jinhan Nan, Tian Gao, Jia Li, Nini Shi, Yunhang Wang, Xuedan Wang, Yuxia Ma\",\"doi\":\"10.1007/s40211-025-00533-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Older adults with depression are at an increased risk of developing cognitive decline. This study aimed to develop and validate a risk prediction model for mild cognitive impairment (MCI) in older adults with depression in China.</p><p><strong>Methods: </strong>This study used 2020 China Health and Retirement Longitudinal Study (CHARLS) data, splitting the cohort (70:30) into training and validation sets. Least absolute shrinkage and selection operator (LASSO) regression with ten-fold cross-validation identified key predictors, and binary logistic regression examined MCI risk factors in older adults with depression. A nomogram was developed, with receiver operating characteristic (ROC) curves assessing discrimination, calibration curves for accuracy, and decision curve analysis (DCA) for clinical benefit.</p><p><strong>Results: </strong>This study included 3512 older adults with depression, 640 (19.9%) of whom had MCI. Binary logistic regression identified age, education level, marital status, residence, pain, internet use, and social participation as significant predictors of MCI in older adults with depression, and these factors were used to construct a nomogram model with good consistency and predictive accuracy. The area under the curve (AUC) values of the predictive model in the training set and internal validation set were 0.78 (95% confidence interval [CI] 0.75-0.80) and 0.75 (95% CI 0.71-0.78); the Hosmer-Lemeshow test results were P = 0.916 and P = 0.749, respectively. ROC analysis of the prediction model showed strong discriminatory ability, calibration curves demonstrated significant agreement between the nomogram model and actual observations, and DCA confirmed a favorable net benefit.</p><p><strong>Conclusion: </strong>The nomogram constructed in this study is a promising and convenient tool for evaluating the risk of MCI among older adults with depression, facilitating early identification of high-risk individuals and enabling timely intervention.</p>\",\"PeriodicalId\":44560,\"journal\":{\"name\":\"NEUROPSYCHIATRIE\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NEUROPSYCHIATRIE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40211-025-00533-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PSYCHIATRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NEUROPSYCHIATRIE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40211-025-00533-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0

摘要

背景:老年抑郁症患者发生认知能力下降的风险增加。本研究旨在建立并验证中国老年抑郁症患者轻度认知障碍(MCI)的风险预测模型。方法:本研究使用2020年中国健康与退休纵向研究(CHARLS)数据,将队列(70:30)分为训练集和验证集。最小绝对收缩和选择算子(LASSO)回归与十倍交叉验证确定了关键预测因素,二元逻辑回归检查了老年抑郁症患者的MCI危险因素。建立了一个nomogram,其中包括评估辨别能力的受试者工作特征(ROC)曲线,评估准确性的校准曲线,以及评估临床获益的决策曲线分析(DCA)。结果:本研究纳入了3512名老年抑郁症患者,其中640人(19.9%)患有轻度认知障碍。二元logistic回归发现年龄、受教育程度、婚姻状况、居住地、疼痛、网络使用和社会参与是老年抑郁症患者MCI的显著预测因子,并利用这些因素构建了具有良好一致性和预测准确性的nomogram模型。预测模型在训练集和内部验证集的曲线下面积(AUC)值分别为0.78(95%置信区间[CI] 0.75 ~ 0.80)和0.75(95%置信区间[CI] 0.71 ~ 0.78);Hosmer-Lemeshow检验结果P = 0.916,P = 0.749。预测模型的ROC分析显示出较强的判别能力,校正曲线显示出nomogram模型与实际观测值之间的显著一致性,DCA证实了良好的净效益。结论:本研究构建的诺线图是评估老年抑郁症患者MCI风险的一种有前景且方便的工具,有助于早期识别高危人群并及时进行干预。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predictive model for mild cognitive impairment in older Chinese adults with depression.

Background: Older adults with depression are at an increased risk of developing cognitive decline. This study aimed to develop and validate a risk prediction model for mild cognitive impairment (MCI) in older adults with depression in China.

Methods: This study used 2020 China Health and Retirement Longitudinal Study (CHARLS) data, splitting the cohort (70:30) into training and validation sets. Least absolute shrinkage and selection operator (LASSO) regression with ten-fold cross-validation identified key predictors, and binary logistic regression examined MCI risk factors in older adults with depression. A nomogram was developed, with receiver operating characteristic (ROC) curves assessing discrimination, calibration curves for accuracy, and decision curve analysis (DCA) for clinical benefit.

Results: This study included 3512 older adults with depression, 640 (19.9%) of whom had MCI. Binary logistic regression identified age, education level, marital status, residence, pain, internet use, and social participation as significant predictors of MCI in older adults with depression, and these factors were used to construct a nomogram model with good consistency and predictive accuracy. The area under the curve (AUC) values of the predictive model in the training set and internal validation set were 0.78 (95% confidence interval [CI] 0.75-0.80) and 0.75 (95% CI 0.71-0.78); the Hosmer-Lemeshow test results were P = 0.916 and P = 0.749, respectively. ROC analysis of the prediction model showed strong discriminatory ability, calibration curves demonstrated significant agreement between the nomogram model and actual observations, and DCA confirmed a favorable net benefit.

Conclusion: The nomogram constructed in this study is a promising and convenient tool for evaluating the risk of MCI among older adults with depression, facilitating early identification of high-risk individuals and enabling timely intervention.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
NEUROPSYCHIATRIE
NEUROPSYCHIATRIE PSYCHIATRY-
CiteScore
3.80
自引率
20.00%
发文量
31
期刊介绍: Die Zeitschrift ist das offizielle Organ der „Österreichischen Gesellschaft für Psychiatrie, Psychotherapie und Psychosomatik (ÖGPP)'', und wissenschaftliches Organ der Österreichischen Alzheimer Gesellschaft, der Österreichischen Gesellschaft für Kinder- und Jugendpsychiatrie, Psychosomatik und Psychotherapie, der Österreichischen Schizophreniegesellschaft, und der pro mente austria - Österreichischer Dachverband der Vereine und Gesellschaften für psychische und soziale Gesundheit.Sie veröffentlicht Übersichten zu relevanten Themen des Fachs, Originalarbeiten, Kasuistiken sowie Briefe an die Herausgeber. Zudem wird auch Buchbesprechungen sowie Neuigkeiten aus den Bereichen Personalia, Standes- und Berufspolitik sowie Kongressankündigungen Raum gewidmet.Thematisch ist das Fach Psychiatrie und die Methoden der Psychotherapie in allen ihren Facetten vertreten. Die Zeitschrift richtet sich somit an alle Berufsgruppen, die sich mit Ursachen, Erscheinungsformen und Behandlungsmöglichkeiten von psychischen Störungen beschäftigen.  -----------------------------------------------------------------------------------------------------·        The professional and educational journal of the Austrian Society of Psychiatry, Psychotherapy and Psychosomatics (Österreichische Gesellschaft für Psychiatrie, Psychotherapie und Psychosomatik; ÖGPP) and the Austrian Society of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy (Österreichische Gesellschaft für Kinder- und Jugendpsychiatrie, Psychosomatik und Psychotherapie; ÖGKJP)·        Overviews of all relevant topics pertaining to the discipline·        Intended for all occupational groups committed to the causes and manifestations of, as well as therapy options for psychic disorders·        All manuscripts principally pass through a double-blind peer review process involving at least two independent expertsThe official journal of the Austrian Societies of Psychiatry, Psychotherapy and Psychosomatics (ÖGPP) and Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy (ÖGKJP)The journal publishes overviews of relevant issues in the field, original work, case reports and letters to the editors. In addition, space is devoted to book reviews, news from the areas of personnel matters and professional policies, and conference announcements.Thematically, the discipline of psychiatry and the methods of psychotherapy are represented in all their facets. The journal is thus aimed at all professional groups committed to the causes and manifestations of, as well as therapy options for psychic disorders
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信