斑马鱼心脏收缩功能的体积成像与计算研究。

IF 4.5 Q1 BIOCHEMICAL RESEARCH METHODS
Cell Reports Methods Pub Date : 2025-08-18 Epub Date: 2025-07-23 DOI:10.1016/j.crmeth.2025.101113
Alireza Saberigarakani, Riya P Patel, Milad Almasian, Xinyuan Zhang, Jonathan Brewer, Sohail S Hassan, Jichen Chai, Juhyun Lee, Baowei Fei, Jie Yuan, Kelli Carroll, Yichen Ding
{"title":"斑马鱼心脏收缩功能的体积成像与计算研究。","authors":"Alireza Saberigarakani, Riya P Patel, Milad Almasian, Xinyuan Zhang, Jonathan Brewer, Sohail S Hassan, Jichen Chai, Juhyun Lee, Baowei Fei, Jie Yuan, Kelli Carroll, Yichen Ding","doi":"10.1016/j.crmeth.2025.101113","DOIUrl":null,"url":null,"abstract":"<p><p>Novel insights into cardiac contractile dysfunction at the cellular level could deepen understanding of arrhythmia and heart injury, which are leading causes of morbidity and mortality worldwide. We present a comprehensive experimental and computational framework combining light-field microscopy and single-cell tracking to investigate real-time volumetric data in live zebrafish hearts, which share structural and electrical similarities to the human heart. Our system acquires 200 vol/s with lateral resolution of up to 5.02 ± 0.54 μm and axial resolution of 9.02 ± 1.11 μm across the whole depth using an expectation-maximization-smoothed deconvolution algorithm. We apply a deep-learning approach to quantify cell displacement and velocity in blood flow and myocardial motion and to perform real-time volumetric tracking from end-systole to end-diastole within a virtual reality environment. This capability delivers high-speed and high-resolution imaging of cardiac contractility at single-cell resolution over multiple cycles, supporting in-depth investigation of intercellular interactions in health and disease.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":" ","pages":"101113"},"PeriodicalIF":4.5000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12461643/pdf/","citationCount":"0","resultStr":"{\"title\":\"Volumetric imaging and computation to explore contractile function in zebrafish hearts.\",\"authors\":\"Alireza Saberigarakani, Riya P Patel, Milad Almasian, Xinyuan Zhang, Jonathan Brewer, Sohail S Hassan, Jichen Chai, Juhyun Lee, Baowei Fei, Jie Yuan, Kelli Carroll, Yichen Ding\",\"doi\":\"10.1016/j.crmeth.2025.101113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Novel insights into cardiac contractile dysfunction at the cellular level could deepen understanding of arrhythmia and heart injury, which are leading causes of morbidity and mortality worldwide. We present a comprehensive experimental and computational framework combining light-field microscopy and single-cell tracking to investigate real-time volumetric data in live zebrafish hearts, which share structural and electrical similarities to the human heart. Our system acquires 200 vol/s with lateral resolution of up to 5.02 ± 0.54 μm and axial resolution of 9.02 ± 1.11 μm across the whole depth using an expectation-maximization-smoothed deconvolution algorithm. We apply a deep-learning approach to quantify cell displacement and velocity in blood flow and myocardial motion and to perform real-time volumetric tracking from end-systole to end-diastole within a virtual reality environment. This capability delivers high-speed and high-resolution imaging of cardiac contractility at single-cell resolution over multiple cycles, supporting in-depth investigation of intercellular interactions in health and disease.</p>\",\"PeriodicalId\":29773,\"journal\":{\"name\":\"Cell Reports Methods\",\"volume\":\" \",\"pages\":\"101113\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12461643/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Reports Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.crmeth.2025.101113\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.crmeth.2025.101113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

在细胞水平上对心脏收缩功能障碍的新见解可以加深对心律失常和心脏损伤的理解,心律失常和心脏损伤是世界范围内发病率和死亡率的主要原因。我们提出了一个综合的实验和计算框架,结合光场显微镜和单细胞跟踪来研究活体斑马鱼心脏的实时体积数据,斑马鱼心脏与人类心脏具有结构和电相似性。该系统采用期望最大化平滑反卷积算法,在整个深度范围内获得200 vol/s的横向分辨率高达5.02±0.54 μm,轴向分辨率为9.02±1.11 μm。我们应用深度学习方法来量化血流和心肌运动中的细胞位移和速度,并在虚拟现实环境中执行从收缩末期到舒张末期的实时体积跟踪。该功能可在多个周期内以单细胞分辨率提供高速和高分辨率的心脏收缩性成像,支持对健康和疾病中细胞间相互作用的深入研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Volumetric imaging and computation to explore contractile function in zebrafish hearts.

Novel insights into cardiac contractile dysfunction at the cellular level could deepen understanding of arrhythmia and heart injury, which are leading causes of morbidity and mortality worldwide. We present a comprehensive experimental and computational framework combining light-field microscopy and single-cell tracking to investigate real-time volumetric data in live zebrafish hearts, which share structural and electrical similarities to the human heart. Our system acquires 200 vol/s with lateral resolution of up to 5.02 ± 0.54 μm and axial resolution of 9.02 ± 1.11 μm across the whole depth using an expectation-maximization-smoothed deconvolution algorithm. We apply a deep-learning approach to quantify cell displacement and velocity in blood flow and myocardial motion and to perform real-time volumetric tracking from end-systole to end-diastole within a virtual reality environment. This capability delivers high-speed and high-resolution imaging of cardiac contractility at single-cell resolution over multiple cycles, supporting in-depth investigation of intercellular interactions in health and disease.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Reports Methods
Cell Reports Methods Chemistry (General), Biochemistry, Genetics and Molecular Biology (General), Immunology and Microbiology (General)
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
111 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信