硝酸钕作用下小鼠肝细胞AML12的RNA-Seq分析

IF 3.9 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Toxics Pub Date : 2025-07-07 DOI:10.3390/toxics13070573
Ning Wang, Jing Leng, Yaxin Han, Gonghua Tao, Jingqiu Sun, Cheng Dong, Kelei Qian, Xiuli Chang, Ping Xiao, Xinyu Hong
{"title":"硝酸钕作用下小鼠肝细胞AML12的RNA-Seq分析","authors":"Ning Wang, Jing Leng, Yaxin Han, Gonghua Tao, Jingqiu Sun, Cheng Dong, Kelei Qian, Xiuli Chang, Ping Xiao, Xinyu Hong","doi":"10.3390/toxics13070573","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Neodymium nitrate (Nd(NO<sub>3</sub>)<sub>3</sub>) is widely used globally, raising concerns about its occupational and environmental safety. It enters the human body via the digestive system, accumulates in organs, and causes toxicity, including potential hepatotoxicity. However, the role of non-coding RNAs (ncRNAs) in Nd(NO<sub>3</sub>)<sub>3</sub>-induced liver injury remains unclear. This study aimed to identify key genes and regulatory pathways involved in Nd(NO<sub>3</sub>)<sub>3</sub>-induced hepatic injury using RNA sequencing (RNA-seq) and differential gene expression analysis.</p><p><strong>Methods: </strong>Mouse hepatocytes (AML12 cells) were exposed to Nd(NO<sub>3</sub>)<sub>3</sub>, and RNA-seq was performed to analyze the expression profiles of miRNA, lncRNA, circRNA, and mRNA. qPCR was used to validate the RNA-seq results. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted to explore the functions and pathways associated with differentially expressed genes (DEGs).</p><p><strong>Results: </strong>Nd(NO<sub>3</sub>)<sub>3</sub> exposure altered the expression of ferroptosis-related genes and induced significant changes in mRNA, miRNA, circRNA, and lncRNA expression levels. GO and KEGG analyses revealed that DEGs were closely related to cellular ferroptosis pathways. Specific miRNAs, lncRNAs, and circRNAs were significantly upregulated, suggesting their potential as biomarkers for Nd(NO<sub>3</sub>)<sub>3</sub>-induced ferroptosis and liver injury.</p><p><strong>Conclusion: </strong>This study provides the first comprehensive transcriptome database for Nd(NO<sub>3</sub>)<sub>3</sub>-induced liver injury, highlighting the involvement of ncRNAs in hepatotoxicity. These findings offer valuable insights for developing biomarkers and understanding the mechanisms underlying Nd(NO<sub>3</sub>)<sub>3</sub>-induced hepatic injury.</p>","PeriodicalId":23195,"journal":{"name":"Toxics","volume":"13 7","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RNA-Seq Analysis of Mouse Hepatocytes AML12 Exposed to Neodymium Nitrate.\",\"authors\":\"Ning Wang, Jing Leng, Yaxin Han, Gonghua Tao, Jingqiu Sun, Cheng Dong, Kelei Qian, Xiuli Chang, Ping Xiao, Xinyu Hong\",\"doi\":\"10.3390/toxics13070573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Neodymium nitrate (Nd(NO<sub>3</sub>)<sub>3</sub>) is widely used globally, raising concerns about its occupational and environmental safety. It enters the human body via the digestive system, accumulates in organs, and causes toxicity, including potential hepatotoxicity. However, the role of non-coding RNAs (ncRNAs) in Nd(NO<sub>3</sub>)<sub>3</sub>-induced liver injury remains unclear. This study aimed to identify key genes and regulatory pathways involved in Nd(NO<sub>3</sub>)<sub>3</sub>-induced hepatic injury using RNA sequencing (RNA-seq) and differential gene expression analysis.</p><p><strong>Methods: </strong>Mouse hepatocytes (AML12 cells) were exposed to Nd(NO<sub>3</sub>)<sub>3</sub>, and RNA-seq was performed to analyze the expression profiles of miRNA, lncRNA, circRNA, and mRNA. qPCR was used to validate the RNA-seq results. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted to explore the functions and pathways associated with differentially expressed genes (DEGs).</p><p><strong>Results: </strong>Nd(NO<sub>3</sub>)<sub>3</sub> exposure altered the expression of ferroptosis-related genes and induced significant changes in mRNA, miRNA, circRNA, and lncRNA expression levels. GO and KEGG analyses revealed that DEGs were closely related to cellular ferroptosis pathways. Specific miRNAs, lncRNAs, and circRNAs were significantly upregulated, suggesting their potential as biomarkers for Nd(NO<sub>3</sub>)<sub>3</sub>-induced ferroptosis and liver injury.</p><p><strong>Conclusion: </strong>This study provides the first comprehensive transcriptome database for Nd(NO<sub>3</sub>)<sub>3</sub>-induced liver injury, highlighting the involvement of ncRNAs in hepatotoxicity. These findings offer valuable insights for developing biomarkers and understanding the mechanisms underlying Nd(NO<sub>3</sub>)<sub>3</sub>-induced hepatic injury.</p>\",\"PeriodicalId\":23195,\"journal\":{\"name\":\"Toxics\",\"volume\":\"13 7\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.3390/toxics13070573\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/toxics13070573","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

目的:硝酸钕(Nd(NO3)3)在全球广泛使用,引起了人们对其职业和环境安全性的关注。它通过消化系统进入人体,在器官中积累,并引起毒性,包括潜在的肝毒性。然而,非编码rna (ncRNAs)在Nd(NO3)3诱导的肝损伤中的作用尚不清楚。本研究旨在通过RNA测序(RNA-seq)和差异基因表达分析,确定Nd(NO3)3诱导肝损伤的关键基因和调控途径。方法:将小鼠肝细胞(AML12细胞)暴露于Nd(NO3)3环境中,采用RNA-seq方法分析miRNA、lncRNA、circRNA和mRNA的表达谱。采用qPCR验证RNA-seq结果。通过基因本体(GO)和京都基因与基因组百科全书(KEGG)分析,探讨差异表达基因(DEGs)的相关功能和途径。结果:Nd(NO3)3暴露改变了铁中毒相关基因的表达,诱导mRNA、miRNA、circRNA和lncRNA表达水平发生显著变化。GO和KEGG分析显示,deg与细胞铁下垂途径密切相关。特异性mirna、lncrna和circrna显著上调,表明它们可能是Nd(NO3)3诱导的铁下垂和肝损伤的生物标志物。结论:本研究为Nd(NO3)3诱导的肝损伤提供了第一个全面的转录组数据库,突出了ncRNAs在肝毒性中的作用。这些发现为开发生物标志物和理解Nd(NO3)3诱导肝损伤的机制提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RNA-Seq Analysis of Mouse Hepatocytes AML12 Exposed to Neodymium Nitrate.

Objective: Neodymium nitrate (Nd(NO3)3) is widely used globally, raising concerns about its occupational and environmental safety. It enters the human body via the digestive system, accumulates in organs, and causes toxicity, including potential hepatotoxicity. However, the role of non-coding RNAs (ncRNAs) in Nd(NO3)3-induced liver injury remains unclear. This study aimed to identify key genes and regulatory pathways involved in Nd(NO3)3-induced hepatic injury using RNA sequencing (RNA-seq) and differential gene expression analysis.

Methods: Mouse hepatocytes (AML12 cells) were exposed to Nd(NO3)3, and RNA-seq was performed to analyze the expression profiles of miRNA, lncRNA, circRNA, and mRNA. qPCR was used to validate the RNA-seq results. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted to explore the functions and pathways associated with differentially expressed genes (DEGs).

Results: Nd(NO3)3 exposure altered the expression of ferroptosis-related genes and induced significant changes in mRNA, miRNA, circRNA, and lncRNA expression levels. GO and KEGG analyses revealed that DEGs were closely related to cellular ferroptosis pathways. Specific miRNAs, lncRNAs, and circRNAs were significantly upregulated, suggesting their potential as biomarkers for Nd(NO3)3-induced ferroptosis and liver injury.

Conclusion: This study provides the first comprehensive transcriptome database for Nd(NO3)3-induced liver injury, highlighting the involvement of ncRNAs in hepatotoxicity. These findings offer valuable insights for developing biomarkers and understanding the mechanisms underlying Nd(NO3)3-induced hepatic injury.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Toxics
Toxics Chemical Engineering-Chemical Health and Safety
CiteScore
4.50
自引率
10.90%
发文量
681
审稿时长
6 weeks
期刊介绍: Toxics (ISSN 2305-6304) is an international, peer-reviewed, open access journal which provides an advanced forum for studies related to all aspects of toxic chemicals and materials. It publishes reviews, regular research papers, and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in detail. There is, therefore, no restriction on the maximum length of the papers, although authors should write their papers in a clear and concise way. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of calculations and experimental procedure can be deposited as supplementary material, if it is not possible to publish them along with the text.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信