在猪模型腕骨置换中使用平均形状骨的小骨植入物的发展。

IF 1.5 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Quianna M Vaughan, Amy M Morton, Douglas Moore, Edward Akelman, Joseph J Crisco
{"title":"在猪模型腕骨置换中使用平均形状骨的小骨植入物的发展。","authors":"Quianna M Vaughan, Amy M Morton, Douglas Moore, Edward Akelman, Joseph J Crisco","doi":"10.1177/09544119251355382","DOIUrl":null,"url":null,"abstract":"<p><p>The development of innovative small bone replacements for the human wrist has been partially limited by the lack of a suitable preclinical animal model. This study explores the feasibility of using the Yucatan minipig (YMP) as a preclinical model for small bone replacement. Implants for the radial carpal bone (RCB), homologous to the human scaphoid, were developed for a pilot in vivo animal study. RCB size (volume, bounding box dimensions) was quantified (<i>n</i> = 35), and relationships between animal age, weight, and RCB volume were investigated. Bounding box dimensions were also analyzed relative to RCB volume. A mean-shaped RCB model was generated using ShapeWorks Studio and scaled to create a set of implants. These implants were evaluated in a pilot in vivo study, where the distances between the explanted bone surface and both the predicted and surgeon-selected implant surfaces were recorded for each animal. Predicted implant distances (0.8 ± 0.2 mm), were larger (<i>p</i> < 0.001) than surgeon-selected implant distances (0.4 ± 0.1 mm) in three animals. In one animal, the predicted implant distances (0.3 ± 0.2 mm) were smaller (<i>p</i> < 0.0001) than the surgeon-selected implant distances (0.5 ± 0.3 mm). The set of implants generated provided the surgeon with options suitable for the range of animals in the in vivo study. This study presents a novel approach to generating small bone replacements by scaling a mean-shaped bone in a porcine model and further evaluates the YMP as a preclinical model for small bone replacement in the human wrist.</p>","PeriodicalId":20666,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","volume":" ","pages":"755-765"},"PeriodicalIF":1.5000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of small bone implants using a mean shape bone in a porcine model for carpal bone replacement.\",\"authors\":\"Quianna M Vaughan, Amy M Morton, Douglas Moore, Edward Akelman, Joseph J Crisco\",\"doi\":\"10.1177/09544119251355382\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The development of innovative small bone replacements for the human wrist has been partially limited by the lack of a suitable preclinical animal model. This study explores the feasibility of using the Yucatan minipig (YMP) as a preclinical model for small bone replacement. Implants for the radial carpal bone (RCB), homologous to the human scaphoid, were developed for a pilot in vivo animal study. RCB size (volume, bounding box dimensions) was quantified (<i>n</i> = 35), and relationships between animal age, weight, and RCB volume were investigated. Bounding box dimensions were also analyzed relative to RCB volume. A mean-shaped RCB model was generated using ShapeWorks Studio and scaled to create a set of implants. These implants were evaluated in a pilot in vivo study, where the distances between the explanted bone surface and both the predicted and surgeon-selected implant surfaces were recorded for each animal. Predicted implant distances (0.8 ± 0.2 mm), were larger (<i>p</i> < 0.001) than surgeon-selected implant distances (0.4 ± 0.1 mm) in three animals. In one animal, the predicted implant distances (0.3 ± 0.2 mm) were smaller (<i>p</i> < 0.0001) than the surgeon-selected implant distances (0.5 ± 0.3 mm). The set of implants generated provided the surgeon with options suitable for the range of animals in the in vivo study. This study presents a novel approach to generating small bone replacements by scaling a mean-shaped bone in a porcine model and further evaluates the YMP as a preclinical model for small bone replacement in the human wrist.</p>\",\"PeriodicalId\":20666,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine\",\"volume\":\" \",\"pages\":\"755-765\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09544119251355382\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544119251355382","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/24 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

由于缺乏合适的临床前动物模型,创新的腕部小骨替代物的发展在一定程度上受到限制。本研究探讨使用尤卡坦迷你猪(YMP)作为小骨置换的临床前模型的可行性。桡骨腕骨(RCB)植入物与人类舟状骨同源,用于体内动物试验。量化RCB大小(体积,边界盒尺寸)(n = 35),并研究动物年龄、体重和RCB体积之间的关系。边界盒尺寸也相对于RCB体积进行了分析。使用ShapeWorks Studio生成平均形状的RCB模型,并缩放以创建一组植入物。这些植入物在体内试验研究中进行了评估,其中记录了每只动物的外植骨表面与预测和外科医生选择的植入物表面之间的距离。预测种植体距离(0.8±0.2 mm),较大(p < 0.05)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of small bone implants using a mean shape bone in a porcine model for carpal bone replacement.

The development of innovative small bone replacements for the human wrist has been partially limited by the lack of a suitable preclinical animal model. This study explores the feasibility of using the Yucatan minipig (YMP) as a preclinical model for small bone replacement. Implants for the radial carpal bone (RCB), homologous to the human scaphoid, were developed for a pilot in vivo animal study. RCB size (volume, bounding box dimensions) was quantified (n = 35), and relationships between animal age, weight, and RCB volume were investigated. Bounding box dimensions were also analyzed relative to RCB volume. A mean-shaped RCB model was generated using ShapeWorks Studio and scaled to create a set of implants. These implants were evaluated in a pilot in vivo study, where the distances between the explanted bone surface and both the predicted and surgeon-selected implant surfaces were recorded for each animal. Predicted implant distances (0.8 ± 0.2 mm), were larger (p < 0.001) than surgeon-selected implant distances (0.4 ± 0.1 mm) in three animals. In one animal, the predicted implant distances (0.3 ± 0.2 mm) were smaller (p < 0.0001) than the surgeon-selected implant distances (0.5 ± 0.3 mm). The set of implants generated provided the surgeon with options suitable for the range of animals in the in vivo study. This study presents a novel approach to generating small bone replacements by scaling a mean-shaped bone in a porcine model and further evaluates the YMP as a preclinical model for small bone replacement in the human wrist.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.60
自引率
5.60%
发文量
122
审稿时长
6 months
期刊介绍: The Journal of Engineering in Medicine is an interdisciplinary journal encompassing all aspects of engineering in medicine. The Journal is a vital tool for maintaining an understanding of the newest techniques and research in medical engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信