Bhargav Arimilli, Tyler A On, Vaishnavi S Srirama, Ye Yang, Gitanjali Asampille, Jeffrey R Brender, Murali C Krishna, Jessica Y Hseuh, Viraj P Chegu, Zachary Kozel, Sandeep Gurram, Mark W Ball, William Marston Linehan, Daniel R Crooks
{"title":"了解手术引起的人类肾缺血的代谢影响:一种时间方法。","authors":"Bhargav Arimilli, Tyler A On, Vaishnavi S Srirama, Ye Yang, Gitanjali Asampille, Jeffrey R Brender, Murali C Krishna, Jessica Y Hseuh, Viraj P Chegu, Zachary Kozel, Sandeep Gurram, Mark W Ball, William Marston Linehan, Daniel R Crooks","doi":"10.3390/metabo15070462","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives</b>: Thousands of nephrectomies are performed annually in the United States, but the short-term metabolic effects of surgically induced renal ischemia remain unclear. The conventional metabolic markers used to characterize post-surgical renal function, such as creatinine and GFR, are measured in the serum but do not provide metabolic information about the renal parenchyma itself. We aimed to characterize the immediate metabolic effects of surgical ischemia on renal parenchyma within a temporal framework. <b>Methods</b>: Timed renal parenchyma biopsies were collected from eight patients undergoing nephrectomy for renal cell carcinoma both prior to and after ligation of the renal hilum. These samples were ground, extracted, and analyzed using nuclear magnetic resonance (NMR) spectroscopy to measure changes in lactate, succinate, glucose, alanine, and glycine levels. <b>Results</b>: Due to experimental limitations, we were only able to draw limited conclusions from three patients. Of the five remaining patients, all had significant increases in lactate and succinate levels as a function of time, though the degree to which these increases occurred varied between each patient. Glucose levels generally decreased in the renal parenchyma but did not necessarily correlate with lactate production, assuming all glucose underwent fermentation to lactate in a hypoxic environment. Alanine and glycine levels did not change in a predictable pattern across patients. <b>Conclusions</b>: There are significant changes in lactate, glucose and succinate levels within minutes of the onset of renal ischemia in human patients. The degree of change in the metabolites analyzed varied significantly between patients. The length of surgical ischemia must be considered during surgical procurement of tumor specimens for metabolomic analysis.</p>","PeriodicalId":18496,"journal":{"name":"Metabolites","volume":"15 7","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding the Metabolic Effects of Surgically Induced Renal Ischemia in Humans: A Temporal Approach.\",\"authors\":\"Bhargav Arimilli, Tyler A On, Vaishnavi S Srirama, Ye Yang, Gitanjali Asampille, Jeffrey R Brender, Murali C Krishna, Jessica Y Hseuh, Viraj P Chegu, Zachary Kozel, Sandeep Gurram, Mark W Ball, William Marston Linehan, Daniel R Crooks\",\"doi\":\"10.3390/metabo15070462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background/Objectives</b>: Thousands of nephrectomies are performed annually in the United States, but the short-term metabolic effects of surgically induced renal ischemia remain unclear. The conventional metabolic markers used to characterize post-surgical renal function, such as creatinine and GFR, are measured in the serum but do not provide metabolic information about the renal parenchyma itself. We aimed to characterize the immediate metabolic effects of surgical ischemia on renal parenchyma within a temporal framework. <b>Methods</b>: Timed renal parenchyma biopsies were collected from eight patients undergoing nephrectomy for renal cell carcinoma both prior to and after ligation of the renal hilum. These samples were ground, extracted, and analyzed using nuclear magnetic resonance (NMR) spectroscopy to measure changes in lactate, succinate, glucose, alanine, and glycine levels. <b>Results</b>: Due to experimental limitations, we were only able to draw limited conclusions from three patients. Of the five remaining patients, all had significant increases in lactate and succinate levels as a function of time, though the degree to which these increases occurred varied between each patient. Glucose levels generally decreased in the renal parenchyma but did not necessarily correlate with lactate production, assuming all glucose underwent fermentation to lactate in a hypoxic environment. Alanine and glycine levels did not change in a predictable pattern across patients. <b>Conclusions</b>: There are significant changes in lactate, glucose and succinate levels within minutes of the onset of renal ischemia in human patients. The degree of change in the metabolites analyzed varied significantly between patients. The length of surgical ischemia must be considered during surgical procurement of tumor specimens for metabolomic analysis.</p>\",\"PeriodicalId\":18496,\"journal\":{\"name\":\"Metabolites\",\"volume\":\"15 7\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metabolites\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/metabo15070462\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolites","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/metabo15070462","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Understanding the Metabolic Effects of Surgically Induced Renal Ischemia in Humans: A Temporal Approach.
Background/Objectives: Thousands of nephrectomies are performed annually in the United States, but the short-term metabolic effects of surgically induced renal ischemia remain unclear. The conventional metabolic markers used to characterize post-surgical renal function, such as creatinine and GFR, are measured in the serum but do not provide metabolic information about the renal parenchyma itself. We aimed to characterize the immediate metabolic effects of surgical ischemia on renal parenchyma within a temporal framework. Methods: Timed renal parenchyma biopsies were collected from eight patients undergoing nephrectomy for renal cell carcinoma both prior to and after ligation of the renal hilum. These samples were ground, extracted, and analyzed using nuclear magnetic resonance (NMR) spectroscopy to measure changes in lactate, succinate, glucose, alanine, and glycine levels. Results: Due to experimental limitations, we were only able to draw limited conclusions from three patients. Of the five remaining patients, all had significant increases in lactate and succinate levels as a function of time, though the degree to which these increases occurred varied between each patient. Glucose levels generally decreased in the renal parenchyma but did not necessarily correlate with lactate production, assuming all glucose underwent fermentation to lactate in a hypoxic environment. Alanine and glycine levels did not change in a predictable pattern across patients. Conclusions: There are significant changes in lactate, glucose and succinate levels within minutes of the onset of renal ischemia in human patients. The degree of change in the metabolites analyzed varied significantly between patients. The length of surgical ischemia must be considered during surgical procurement of tumor specimens for metabolomic analysis.
MetabolitesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
5.70
自引率
7.30%
发文量
1070
审稿时长
17.17 days
期刊介绍:
Metabolites (ISSN 2218-1989) is an international, peer-reviewed open access journal of metabolism and metabolomics. Metabolites publishes original research articles and review articles in all molecular aspects of metabolism relevant to the fields of metabolomics, metabolic biochemistry, computational and systems biology, biotechnology and medicine, with a particular focus on the biological roles of metabolites and small molecule biomarkers. Metabolites encourages scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on article length. Sufficient experimental details must be provided to enable the results to be accurately reproduced. Electronic material representing additional figures, materials and methods explanation, or supporting results and evidence can be submitted with the main manuscript as supplementary material.