早产儿对儿童代谢性骨形态和骨密度的长期影响。

IF 3.4 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Metabolites Pub Date : 2025-07-08 DOI:10.3390/metabo15070463
Panagiota Markopoulou, Artemis Doulgeraki, Arsinoi Koutroumpa, Georgios Polyzois, Helen Athanasopoulou, Christina Kanaka-Gantenbein, Tania Siahanidou
{"title":"早产儿对儿童代谢性骨形态和骨密度的长期影响。","authors":"Panagiota Markopoulou, Artemis Doulgeraki, Arsinoi Koutroumpa, Georgios Polyzois, Helen Athanasopoulou, Christina Kanaka-Gantenbein, Tania Siahanidou","doi":"10.3390/metabo15070463","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives</b>: Recent data on long-term consequences of prematurity on bone health are conflicting. The aim of this study was to assess the metabolic bone profile and bone mineral density (BMD) in prepubertal children born prematurely and to examine possible associations between bone health parameters and perinatal morbidity factors. <b>Methods</b>: This cross-sectional observational study included 144 children of mean (SD) age 10.9 (1.6) years: 49 children born very preterm (≤32 gestational weeks), 37 moderate-to-late preterm (32<sup>+1</sup> to 36<sup>+6</sup> gestational weeks), and 58 born at term (controls). Serum levels of calcium/Ca, phosphorus/P, alkaline phosphatase/ALP, 25-hydroxyvitamin D/25(OH)D, bone formation markers (osteocalcin/OC, procollagen type I C-terminal propeptide/PICP, and insulin growth factor-1/IGF-1), and bone resorption markers (serum tartrate-resistant acid phosphatase 5b/bone TRAP5band urinary calcium-to-creatinine ratio) were measured. Total-body and lumbar-spine BMD and BMD Z-scores were calculated using dual-energy X-ray absorptiometry/DXA. <b>Results</b>: Children born very preterm showed significantly higher ALP, OC, PICP, and bone TRAP5b levels compared to controls, as well as compared to children born moderate-to-late preterm. Total-body and lumbar-spine BMD Z-scores were significantly lower in the very preterm-born group compared to controls. Gestational diabetes, preeclampsia, and bronchopulmonary dysplasia were associated with lower total-body BMD in the very preterm-born population. <b>Conclusions</b>: Preterm birth is associated with impaired metabolic bone profile and lower total-body and lumbar-spine BMD in childhood. Moderate-to-late preterm-born children exhibit altered metabolic bone parameters compared to very preterm-born children. Further research in children might allow better insight into the long-term impact of preterm birth on bone health.</p>","PeriodicalId":18496,"journal":{"name":"Metabolites","volume":"15 7","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Long-Term Impact of Preterm Birth on Metabolic Bone Profile and Bone Mineral Density in Childhood.\",\"authors\":\"Panagiota Markopoulou, Artemis Doulgeraki, Arsinoi Koutroumpa, Georgios Polyzois, Helen Athanasopoulou, Christina Kanaka-Gantenbein, Tania Siahanidou\",\"doi\":\"10.3390/metabo15070463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background/Objectives</b>: Recent data on long-term consequences of prematurity on bone health are conflicting. The aim of this study was to assess the metabolic bone profile and bone mineral density (BMD) in prepubertal children born prematurely and to examine possible associations between bone health parameters and perinatal morbidity factors. <b>Methods</b>: This cross-sectional observational study included 144 children of mean (SD) age 10.9 (1.6) years: 49 children born very preterm (≤32 gestational weeks), 37 moderate-to-late preterm (32<sup>+1</sup> to 36<sup>+6</sup> gestational weeks), and 58 born at term (controls). Serum levels of calcium/Ca, phosphorus/P, alkaline phosphatase/ALP, 25-hydroxyvitamin D/25(OH)D, bone formation markers (osteocalcin/OC, procollagen type I C-terminal propeptide/PICP, and insulin growth factor-1/IGF-1), and bone resorption markers (serum tartrate-resistant acid phosphatase 5b/bone TRAP5band urinary calcium-to-creatinine ratio) were measured. Total-body and lumbar-spine BMD and BMD Z-scores were calculated using dual-energy X-ray absorptiometry/DXA. <b>Results</b>: Children born very preterm showed significantly higher ALP, OC, PICP, and bone TRAP5b levels compared to controls, as well as compared to children born moderate-to-late preterm. Total-body and lumbar-spine BMD Z-scores were significantly lower in the very preterm-born group compared to controls. Gestational diabetes, preeclampsia, and bronchopulmonary dysplasia were associated with lower total-body BMD in the very preterm-born population. <b>Conclusions</b>: Preterm birth is associated with impaired metabolic bone profile and lower total-body and lumbar-spine BMD in childhood. Moderate-to-late preterm-born children exhibit altered metabolic bone parameters compared to very preterm-born children. Further research in children might allow better insight into the long-term impact of preterm birth on bone health.</p>\",\"PeriodicalId\":18496,\"journal\":{\"name\":\"Metabolites\",\"volume\":\"15 7\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metabolites\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/metabo15070463\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolites","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/metabo15070463","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景/目的:最近关于早产对骨骼健康的长期影响的数据是相互矛盾的。本研究的目的是评估过早出生的青春期前儿童的代谢骨骼特征和骨密度(BMD),并检查骨骼健康参数与围产期发病因素之间的可能关联。方法:本横断面观察研究纳入144例平均(SD)年龄10.9(1.6)岁的儿童:49例重度早产(≤32胎周),37例中度至晚期早产(32+1至36+6胎周),58例足月出生(对照组)。测定血清钙/钙、磷/磷、碱性磷酸酶/ALP、25-羟基维生素D/25(OH)D、骨形成标志物(骨钙素/OC、前胶原I型c末端前肽/PICP、胰岛素生长因子-1/IGF-1)、骨吸收标志物(血清酒石酸耐酸磷酸酶5b/骨trap5带尿钙/肌酐比)水平。采用双能x线骨密度仪/DXA计算全身和腰椎骨密度及骨密度z评分。结果:与对照组相比,重度早产儿童ALP、OC、PICP和骨TRAP5b水平显著升高,与中度至晚期早产儿童相比也是如此。与对照组相比,极早产儿组的全身和腰椎BMD z评分明显较低。妊娠期糖尿病、先兆子痫和支气管肺发育不良与早产儿总体骨密度较低有关。结论:早产与儿童代谢性骨谱受损、全身和腰椎骨密度降低有关。与早产儿相比,中度至晚期早产儿表现出骨代谢参数的改变。对儿童的进一步研究可能有助于更好地了解早产对骨骼健康的长期影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Long-Term Impact of Preterm Birth on Metabolic Bone Profile and Bone Mineral Density in Childhood.

Background/Objectives: Recent data on long-term consequences of prematurity on bone health are conflicting. The aim of this study was to assess the metabolic bone profile and bone mineral density (BMD) in prepubertal children born prematurely and to examine possible associations between bone health parameters and perinatal morbidity factors. Methods: This cross-sectional observational study included 144 children of mean (SD) age 10.9 (1.6) years: 49 children born very preterm (≤32 gestational weeks), 37 moderate-to-late preterm (32+1 to 36+6 gestational weeks), and 58 born at term (controls). Serum levels of calcium/Ca, phosphorus/P, alkaline phosphatase/ALP, 25-hydroxyvitamin D/25(OH)D, bone formation markers (osteocalcin/OC, procollagen type I C-terminal propeptide/PICP, and insulin growth factor-1/IGF-1), and bone resorption markers (serum tartrate-resistant acid phosphatase 5b/bone TRAP5band urinary calcium-to-creatinine ratio) were measured. Total-body and lumbar-spine BMD and BMD Z-scores were calculated using dual-energy X-ray absorptiometry/DXA. Results: Children born very preterm showed significantly higher ALP, OC, PICP, and bone TRAP5b levels compared to controls, as well as compared to children born moderate-to-late preterm. Total-body and lumbar-spine BMD Z-scores were significantly lower in the very preterm-born group compared to controls. Gestational diabetes, preeclampsia, and bronchopulmonary dysplasia were associated with lower total-body BMD in the very preterm-born population. Conclusions: Preterm birth is associated with impaired metabolic bone profile and lower total-body and lumbar-spine BMD in childhood. Moderate-to-late preterm-born children exhibit altered metabolic bone parameters compared to very preterm-born children. Further research in children might allow better insight into the long-term impact of preterm birth on bone health.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Metabolites
Metabolites Biochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
5.70
自引率
7.30%
发文量
1070
审稿时长
17.17 days
期刊介绍: Metabolites (ISSN 2218-1989) is an international, peer-reviewed open access journal of metabolism and metabolomics. Metabolites publishes original research articles and review articles in all molecular aspects of metabolism relevant to the fields of metabolomics, metabolic biochemistry, computational and systems biology, biotechnology and medicine, with a particular focus on the biological roles of metabolites and small molecule biomarkers. Metabolites encourages scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on article length. Sufficient experimental details must be provided to enable the results to be accurately reproduced. Electronic material representing additional figures, materials and methods explanation, or supporting results and evidence can be submitted with the main manuscript as supplementary material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信