{"title":"小檗碱作为一种生物活性生物碱:其在肥胖管理中的作用的多组学观点。","authors":"Bartłomiej Zieniuk, Magdalena Pawełkowicz","doi":"10.3390/metabo15070467","DOIUrl":null,"url":null,"abstract":"<p><p>Berberine, a bioactive isoquinoline alkaloid derived from medicinal plants such as <i>Berberis</i> and <i>Coptis</i> species, shows significant promise for managing obesity and associated metabolic disorders. This review synthesizes evidence on its modulation of AMP-activated protein kinase (AMPK) signaling, gut microbiota composition, lipid metabolism, and adipokine networks, elucidating how these actions converge to suppress adipogenesis and improve insulin sensitivity. Metabolomic profiling reveals critical shifts in bile acid metabolism, short-chain fatty acid production, and mitochondrial function. Recent studies also highlight berberine's anti-inflammatory effects and regulatory influence on glucose homeostasis. Despite its promise, challenges in oral bioavailability and drug interactions necessitate the development of advanced delivery strategies. We further discuss nanoformulations and multi-omics approaches, which integrate data from genomics, transcriptomics, proteomics, and metabolomics, provide new insights into berberine's mechanisms, and may guide personalized therapeutic applications. While promising, further studies are needed to validate these findings in humans and translate them into effective clinical strategies.</p>","PeriodicalId":18496,"journal":{"name":"Metabolites","volume":"15 7","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Berberine as a Bioactive Alkaloid: Multi-Omics Perspectives on Its Role in Obesity Management.\",\"authors\":\"Bartłomiej Zieniuk, Magdalena Pawełkowicz\",\"doi\":\"10.3390/metabo15070467\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Berberine, a bioactive isoquinoline alkaloid derived from medicinal plants such as <i>Berberis</i> and <i>Coptis</i> species, shows significant promise for managing obesity and associated metabolic disorders. This review synthesizes evidence on its modulation of AMP-activated protein kinase (AMPK) signaling, gut microbiota composition, lipid metabolism, and adipokine networks, elucidating how these actions converge to suppress adipogenesis and improve insulin sensitivity. Metabolomic profiling reveals critical shifts in bile acid metabolism, short-chain fatty acid production, and mitochondrial function. Recent studies also highlight berberine's anti-inflammatory effects and regulatory influence on glucose homeostasis. Despite its promise, challenges in oral bioavailability and drug interactions necessitate the development of advanced delivery strategies. We further discuss nanoformulations and multi-omics approaches, which integrate data from genomics, transcriptomics, proteomics, and metabolomics, provide new insights into berberine's mechanisms, and may guide personalized therapeutic applications. While promising, further studies are needed to validate these findings in humans and translate them into effective clinical strategies.</p>\",\"PeriodicalId\":18496,\"journal\":{\"name\":\"Metabolites\",\"volume\":\"15 7\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metabolites\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/metabo15070467\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolites","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/metabo15070467","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Berberine as a Bioactive Alkaloid: Multi-Omics Perspectives on Its Role in Obesity Management.
Berberine, a bioactive isoquinoline alkaloid derived from medicinal plants such as Berberis and Coptis species, shows significant promise for managing obesity and associated metabolic disorders. This review synthesizes evidence on its modulation of AMP-activated protein kinase (AMPK) signaling, gut microbiota composition, lipid metabolism, and adipokine networks, elucidating how these actions converge to suppress adipogenesis and improve insulin sensitivity. Metabolomic profiling reveals critical shifts in bile acid metabolism, short-chain fatty acid production, and mitochondrial function. Recent studies also highlight berberine's anti-inflammatory effects and regulatory influence on glucose homeostasis. Despite its promise, challenges in oral bioavailability and drug interactions necessitate the development of advanced delivery strategies. We further discuss nanoformulations and multi-omics approaches, which integrate data from genomics, transcriptomics, proteomics, and metabolomics, provide new insights into berberine's mechanisms, and may guide personalized therapeutic applications. While promising, further studies are needed to validate these findings in humans and translate them into effective clinical strategies.
MetabolitesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
5.70
自引率
7.30%
发文量
1070
审稿时长
17.17 days
期刊介绍:
Metabolites (ISSN 2218-1989) is an international, peer-reviewed open access journal of metabolism and metabolomics. Metabolites publishes original research articles and review articles in all molecular aspects of metabolism relevant to the fields of metabolomics, metabolic biochemistry, computational and systems biology, biotechnology and medicine, with a particular focus on the biological roles of metabolites and small molecule biomarkers. Metabolites encourages scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on article length. Sufficient experimental details must be provided to enable the results to be accurately reproduced. Electronic material representing additional figures, materials and methods explanation, or supporting results and evidence can be submitted with the main manuscript as supplementary material.