肝脏线粒体中的氨基酸代谢:从稳态到疾病。

IF 3.4 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Metabolites Pub Date : 2025-07-02 DOI:10.3390/metabo15070446
Ranya Erdal, Kıvanç Birsoy, Gokhan Unlu
{"title":"肝脏线粒体中的氨基酸代谢:从稳态到疾病。","authors":"Ranya Erdal, Kıvanç Birsoy, Gokhan Unlu","doi":"10.3390/metabo15070446","DOIUrl":null,"url":null,"abstract":"<p><p>Hepatic mitochondria play critical roles in sustaining systemic nutrient balance, nitrogen detoxification, and cellular bioenergetics. These functions depend on tightly regulated mitochondrial processes, including amino acid catabolism, ammonia clearance via the urea cycle, and transport through specialized solute carriers. Genetic disruptions in these pathways underlie a range of inborn errors of metabolism, often resulting in systemic toxicity and neurological dysfunction. Here, we review the physiological functions of hepatic mitochondrial amino acid metabolism, with a focus on subcellular compartmentalization, disease mechanisms, and therapeutic strategies. We discuss how emerging genetic and metabolic interventions-including dietary modulation, cofactor replacement, and gene therapy-are reshaping treatment of liver-based metabolic disorders. Understanding these pathways offers mechanistic insights into metabolic homeostasis and reveals actionable vulnerabilities in metabolic disease and cancer.</p>","PeriodicalId":18496,"journal":{"name":"Metabolites","volume":"15 7","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Amino Acid Metabolism in Liver Mitochondria: From Homeostasis to Disease.\",\"authors\":\"Ranya Erdal, Kıvanç Birsoy, Gokhan Unlu\",\"doi\":\"10.3390/metabo15070446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hepatic mitochondria play critical roles in sustaining systemic nutrient balance, nitrogen detoxification, and cellular bioenergetics. These functions depend on tightly regulated mitochondrial processes, including amino acid catabolism, ammonia clearance via the urea cycle, and transport through specialized solute carriers. Genetic disruptions in these pathways underlie a range of inborn errors of metabolism, often resulting in systemic toxicity and neurological dysfunction. Here, we review the physiological functions of hepatic mitochondrial amino acid metabolism, with a focus on subcellular compartmentalization, disease mechanisms, and therapeutic strategies. We discuss how emerging genetic and metabolic interventions-including dietary modulation, cofactor replacement, and gene therapy-are reshaping treatment of liver-based metabolic disorders. Understanding these pathways offers mechanistic insights into metabolic homeostasis and reveals actionable vulnerabilities in metabolic disease and cancer.</p>\",\"PeriodicalId\":18496,\"journal\":{\"name\":\"Metabolites\",\"volume\":\"15 7\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metabolites\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/metabo15070446\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolites","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/metabo15070446","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

肝脏线粒体在维持系统营养平衡、氮解毒和细胞生物能量学中起着至关重要的作用。这些功能依赖于严格调控的线粒体过程,包括氨基酸分解代谢、尿素循环中的氨清除和通过专门的溶质载体的运输。这些途径的遗传破坏是一系列先天代谢错误的基础,通常导致全身毒性和神经功能障碍。在这里,我们回顾了肝脏线粒体氨基酸代谢的生理功能,重点是亚细胞区隔化,疾病机制和治疗策略。我们讨论了新兴的遗传和代谢干预-包括饮食调节,辅助因子替代和基因治疗-如何重塑肝脏代谢紊乱的治疗。了解这些途径有助于了解代谢稳态的机制,并揭示代谢疾病和癌症的可操作脆弱性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Amino Acid Metabolism in Liver Mitochondria: From Homeostasis to Disease.

Hepatic mitochondria play critical roles in sustaining systemic nutrient balance, nitrogen detoxification, and cellular bioenergetics. These functions depend on tightly regulated mitochondrial processes, including amino acid catabolism, ammonia clearance via the urea cycle, and transport through specialized solute carriers. Genetic disruptions in these pathways underlie a range of inborn errors of metabolism, often resulting in systemic toxicity and neurological dysfunction. Here, we review the physiological functions of hepatic mitochondrial amino acid metabolism, with a focus on subcellular compartmentalization, disease mechanisms, and therapeutic strategies. We discuss how emerging genetic and metabolic interventions-including dietary modulation, cofactor replacement, and gene therapy-are reshaping treatment of liver-based metabolic disorders. Understanding these pathways offers mechanistic insights into metabolic homeostasis and reveals actionable vulnerabilities in metabolic disease and cancer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Metabolites
Metabolites Biochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
5.70
自引率
7.30%
发文量
1070
审稿时长
17.17 days
期刊介绍: Metabolites (ISSN 2218-1989) is an international, peer-reviewed open access journal of metabolism and metabolomics. Metabolites publishes original research articles and review articles in all molecular aspects of metabolism relevant to the fields of metabolomics, metabolic biochemistry, computational and systems biology, biotechnology and medicine, with a particular focus on the biological roles of metabolites and small molecule biomarkers. Metabolites encourages scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on article length. Sufficient experimental details must be provided to enable the results to be accurately reproduced. Electronic material representing additional figures, materials and methods explanation, or supporting results and evidence can be submitted with the main manuscript as supplementary material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信