Chongyuan Sima, Qifan Zhang, Xiaoli Yu, Bo Yan, Shulin Zhang
{"title":"斑马鱼感染海洋分枝杆菌后的代谢变化:一项广泛靶向的代谢组学分析","authors":"Chongyuan Sima, Qifan Zhang, Xiaoli Yu, Bo Yan, Shulin Zhang","doi":"10.3390/metabo15070449","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>To explore the metabolic changes in zebrafish larvae after infection with <i>Mycobacterium marinum</i>, this study adopted a widely targeted metabolomic approach to analyze the changes in the overall metabolic profiles of zebrafish larvae infected for 5 days.</p><p><strong>Methods: </strong>Data were collected by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Mass spectrometry data were processed using Analyst 1.6.3 and MultiQuant 3.0.3 software, and multivariate statistical analysis was carried out. The KEGG database, HMDB database, and CHEBI database were used to screen and identify differential metabolites, and metabolic pathway enrichment analysis was performed through KEGG pathways.</p><p><strong>Results: </strong>A total of 329 metabolites were detected, among which 61 differential metabolites were screened. Specifically, 41 metabolites, such as kynurenine, isoallolithocholic acid, 2'-deoxyguanosine, indole-3-carboxaldehyde, and L-lactic acid, were downregulated, while 20 metabolites, such as L-palmitoylcarnitine, myristoyl-L-carnitine, dodecanoylcarnitine, 2-isopropyl-malic acid, and 2-methylsuccinic acid, were upregulated. KEGG metabolic pathway enrichment analysis indicated that these differential metabolites were mainly involved in metabolic pathways such as pyrimidine metabolism, nucleotide metabolism, the pentose phosphate pathway, and purine metabolism.</p><p><strong>Conclusions: </strong>This study demonstrated that significant changes occurred in multiple metabolites and metabolic pathways in zebrafish larvae after infection with <i>M. marinum</i>. The research results have improved the understanding of zebrafish as a model organism in the field of <i>Mycobacterium</i> research and laid a solid foundation for subsequent metabolomic-related research using zebrafish.</p>","PeriodicalId":18496,"journal":{"name":"Metabolites","volume":"15 7","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metabolic Changes in Zebrafish Larvae Infected with <i>Mycobacterium marinum</i>: A Widely Targeted Metabolomic Analysis.\",\"authors\":\"Chongyuan Sima, Qifan Zhang, Xiaoli Yu, Bo Yan, Shulin Zhang\",\"doi\":\"10.3390/metabo15070449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>To explore the metabolic changes in zebrafish larvae after infection with <i>Mycobacterium marinum</i>, this study adopted a widely targeted metabolomic approach to analyze the changes in the overall metabolic profiles of zebrafish larvae infected for 5 days.</p><p><strong>Methods: </strong>Data were collected by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Mass spectrometry data were processed using Analyst 1.6.3 and MultiQuant 3.0.3 software, and multivariate statistical analysis was carried out. The KEGG database, HMDB database, and CHEBI database were used to screen and identify differential metabolites, and metabolic pathway enrichment analysis was performed through KEGG pathways.</p><p><strong>Results: </strong>A total of 329 metabolites were detected, among which 61 differential metabolites were screened. Specifically, 41 metabolites, such as kynurenine, isoallolithocholic acid, 2'-deoxyguanosine, indole-3-carboxaldehyde, and L-lactic acid, were downregulated, while 20 metabolites, such as L-palmitoylcarnitine, myristoyl-L-carnitine, dodecanoylcarnitine, 2-isopropyl-malic acid, and 2-methylsuccinic acid, were upregulated. KEGG metabolic pathway enrichment analysis indicated that these differential metabolites were mainly involved in metabolic pathways such as pyrimidine metabolism, nucleotide metabolism, the pentose phosphate pathway, and purine metabolism.</p><p><strong>Conclusions: </strong>This study demonstrated that significant changes occurred in multiple metabolites and metabolic pathways in zebrafish larvae after infection with <i>M. marinum</i>. The research results have improved the understanding of zebrafish as a model organism in the field of <i>Mycobacterium</i> research and laid a solid foundation for subsequent metabolomic-related research using zebrafish.</p>\",\"PeriodicalId\":18496,\"journal\":{\"name\":\"Metabolites\",\"volume\":\"15 7\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metabolites\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/metabo15070449\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolites","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/metabo15070449","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Metabolic Changes in Zebrafish Larvae Infected with Mycobacterium marinum: A Widely Targeted Metabolomic Analysis.
Objectives: To explore the metabolic changes in zebrafish larvae after infection with Mycobacterium marinum, this study adopted a widely targeted metabolomic approach to analyze the changes in the overall metabolic profiles of zebrafish larvae infected for 5 days.
Methods: Data were collected by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Mass spectrometry data were processed using Analyst 1.6.3 and MultiQuant 3.0.3 software, and multivariate statistical analysis was carried out. The KEGG database, HMDB database, and CHEBI database were used to screen and identify differential metabolites, and metabolic pathway enrichment analysis was performed through KEGG pathways.
Results: A total of 329 metabolites were detected, among which 61 differential metabolites were screened. Specifically, 41 metabolites, such as kynurenine, isoallolithocholic acid, 2'-deoxyguanosine, indole-3-carboxaldehyde, and L-lactic acid, were downregulated, while 20 metabolites, such as L-palmitoylcarnitine, myristoyl-L-carnitine, dodecanoylcarnitine, 2-isopropyl-malic acid, and 2-methylsuccinic acid, were upregulated. KEGG metabolic pathway enrichment analysis indicated that these differential metabolites were mainly involved in metabolic pathways such as pyrimidine metabolism, nucleotide metabolism, the pentose phosphate pathway, and purine metabolism.
Conclusions: This study demonstrated that significant changes occurred in multiple metabolites and metabolic pathways in zebrafish larvae after infection with M. marinum. The research results have improved the understanding of zebrafish as a model organism in the field of Mycobacterium research and laid a solid foundation for subsequent metabolomic-related research using zebrafish.
MetabolitesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
5.70
自引率
7.30%
发文量
1070
审稿时长
17.17 days
期刊介绍:
Metabolites (ISSN 2218-1989) is an international, peer-reviewed open access journal of metabolism and metabolomics. Metabolites publishes original research articles and review articles in all molecular aspects of metabolism relevant to the fields of metabolomics, metabolic biochemistry, computational and systems biology, biotechnology and medicine, with a particular focus on the biological roles of metabolites and small molecule biomarkers. Metabolites encourages scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on article length. Sufficient experimental details must be provided to enable the results to be accurately reproduced. Electronic material representing additional figures, materials and methods explanation, or supporting results and evidence can be submitted with the main manuscript as supplementary material.