Chang-Rong Lai, Meng-Xing Jiang, Dan-Mei Tian, Wei Lu, Bin Wu, Jin-Shan Tang, Yi Zou, Song-Hui Lv, Xin-Sheng Yao
{"title":"利用DeepSAT和LC-MS/MS技术分离海洋甲藻中ω-3多不饱和脂肪酸及其对小胶质细胞功能的高活性研究","authors":"Chang-Rong Lai, Meng-Xing Jiang, Dan-Mei Tian, Wei Lu, Bin Wu, Jin-Shan Tang, Yi Zou, Song-Hui Lv, Xin-Sheng Yao","doi":"10.3390/md23070286","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we integrated HSQC-based DeepSAT with UPLC-MS/MS to guide the isolation of omega-3 polyunsaturated fatty acid derivatives (PUFAs) from marine resources. Through this approach, four new (<b>1</b>-<b>4</b>) and nine known (<b>5</b>-<b>13</b>) PUFA analogues were obtained from large-scale cultures of the marine dinoflagellate <i>Prorocentrum lima</i>, with lipidomic profiling identifying FA18:5 (<b>5</b>), FA18:4 (<b>7</b>), FA22:6 (<b>8</b>), and FA22:6 methyl ester (<b>11</b>) as major constituents of the algal oil extract. Structural elucidation was achieved through integrated spectroscopic analyses of IR, 1D and 2D NMR, and HR-ESI-MS data. Given the pivotal role of microglia in Alzheimer's disease (AD) pathogenesis, we further evaluated the neuroprotective potential of these PUFAs by assessing their regulatory effects on critical microglial functions in human microglia clone 3 (HMC3) cells, including chemotactic migration and amyloid-β42 (Aβ42) phagocytic clearance. Pharmacological evaluation demonstrated that FA20:5 butanediol ester (<b>1</b>), FA18:5 (<b>5</b>), FA18:4 (<b>7</b>), FA22:6 (<b>8</b>), and (<i>Z</i>)-10-nonadecenoic acid (<b>13</b>) significantly enhanced HMC3 migration in a wound-healing assay. Notably, FA18:4 (<b>7</b>) also significantly promoted Aβ42 phagocytosis by HMC3 microglia while maintaining cellular viability and avoiding pro-inflammatory activation at 20 μM. Collectively, our study suggests that FA18:4 (<b>7</b>) modulates microglial function in vitro, indicating its potential to exert neuroprotective effects.</p>","PeriodicalId":18222,"journal":{"name":"Marine Drugs","volume":"23 7","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Targeted Isolation of ω-3 Polyunsaturated Fatty Acids from the Marine Dinoflagellate <i>Prorocentrum lima</i> Using DeepSAT and LC-MS/MS and Their High Activity in Promoting Microglial Functions.\",\"authors\":\"Chang-Rong Lai, Meng-Xing Jiang, Dan-Mei Tian, Wei Lu, Bin Wu, Jin-Shan Tang, Yi Zou, Song-Hui Lv, Xin-Sheng Yao\",\"doi\":\"10.3390/md23070286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, we integrated HSQC-based DeepSAT with UPLC-MS/MS to guide the isolation of omega-3 polyunsaturated fatty acid derivatives (PUFAs) from marine resources. Through this approach, four new (<b>1</b>-<b>4</b>) and nine known (<b>5</b>-<b>13</b>) PUFA analogues were obtained from large-scale cultures of the marine dinoflagellate <i>Prorocentrum lima</i>, with lipidomic profiling identifying FA18:5 (<b>5</b>), FA18:4 (<b>7</b>), FA22:6 (<b>8</b>), and FA22:6 methyl ester (<b>11</b>) as major constituents of the algal oil extract. Structural elucidation was achieved through integrated spectroscopic analyses of IR, 1D and 2D NMR, and HR-ESI-MS data. Given the pivotal role of microglia in Alzheimer's disease (AD) pathogenesis, we further evaluated the neuroprotective potential of these PUFAs by assessing their regulatory effects on critical microglial functions in human microglia clone 3 (HMC3) cells, including chemotactic migration and amyloid-β42 (Aβ42) phagocytic clearance. Pharmacological evaluation demonstrated that FA20:5 butanediol ester (<b>1</b>), FA18:5 (<b>5</b>), FA18:4 (<b>7</b>), FA22:6 (<b>8</b>), and (<i>Z</i>)-10-nonadecenoic acid (<b>13</b>) significantly enhanced HMC3 migration in a wound-healing assay. Notably, FA18:4 (<b>7</b>) also significantly promoted Aβ42 phagocytosis by HMC3 microglia while maintaining cellular viability and avoiding pro-inflammatory activation at 20 μM. Collectively, our study suggests that FA18:4 (<b>7</b>) modulates microglial function in vitro, indicating its potential to exert neuroprotective effects.</p>\",\"PeriodicalId\":18222,\"journal\":{\"name\":\"Marine Drugs\",\"volume\":\"23 7\",\"pages\":\"\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Drugs\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/md23070286\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Drugs","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/md23070286","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Targeted Isolation of ω-3 Polyunsaturated Fatty Acids from the Marine Dinoflagellate Prorocentrum lima Using DeepSAT and LC-MS/MS and Their High Activity in Promoting Microglial Functions.
In this study, we integrated HSQC-based DeepSAT with UPLC-MS/MS to guide the isolation of omega-3 polyunsaturated fatty acid derivatives (PUFAs) from marine resources. Through this approach, four new (1-4) and nine known (5-13) PUFA analogues were obtained from large-scale cultures of the marine dinoflagellate Prorocentrum lima, with lipidomic profiling identifying FA18:5 (5), FA18:4 (7), FA22:6 (8), and FA22:6 methyl ester (11) as major constituents of the algal oil extract. Structural elucidation was achieved through integrated spectroscopic analyses of IR, 1D and 2D NMR, and HR-ESI-MS data. Given the pivotal role of microglia in Alzheimer's disease (AD) pathogenesis, we further evaluated the neuroprotective potential of these PUFAs by assessing their regulatory effects on critical microglial functions in human microglia clone 3 (HMC3) cells, including chemotactic migration and amyloid-β42 (Aβ42) phagocytic clearance. Pharmacological evaluation demonstrated that FA20:5 butanediol ester (1), FA18:5 (5), FA18:4 (7), FA22:6 (8), and (Z)-10-nonadecenoic acid (13) significantly enhanced HMC3 migration in a wound-healing assay. Notably, FA18:4 (7) also significantly promoted Aβ42 phagocytosis by HMC3 microglia while maintaining cellular viability and avoiding pro-inflammatory activation at 20 μM. Collectively, our study suggests that FA18:4 (7) modulates microglial function in vitro, indicating its potential to exert neuroprotective effects.
期刊介绍:
Marine Drugs (ISSN 1660-3397) publishes reviews, regular research papers and short notes on the research, development and production of drugs from the sea. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible, particularly synthetic procedures and characterization information for bioactive compounds. There is no restriction on the length of the experimental section.