海葡萄提取物代谢组学分析及抗幽门螺杆菌活性研究

IF 4.9 2区 医学 Q1 CHEMISTRY, MEDICINAL
Marine Drugs Pub Date : 2025-07-07 DOI:10.3390/md23070282
Chananchida Thacharoen, Thisirak Inkaewwong, Watthanachai Jumpathong, Pornchai Kaewsapsak, Thiravat Rattanapot, Tippapha Pisithkul
{"title":"海葡萄提取物代谢组学分析及抗幽门螺杆菌活性研究","authors":"Chananchida Thacharoen, Thisirak Inkaewwong, Watthanachai Jumpathong, Pornchai Kaewsapsak, Thiravat Rattanapot, Tippapha Pisithkul","doi":"10.3390/md23070282","DOIUrl":null,"url":null,"abstract":"<p><p><i>Helicobacter pylori</i> is a gastric pathogen implicated in peptic ulcer disease and gastric cancer. The increasing prevalence of antibiotic-resistant strains underscores the urgent need for alternative therapeutic strategies. In this study, we investigated the chemical composition and antibacterial activity of an aqueous extract from <i>Caulerpa lentillifera</i> (sea grape), a farm-cultivated edible green seaweed collected from Krabi Province, Thailand. Ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) revealed that the extract was enriched in bioactive nucleosides and phenolic compounds. In vitro assays demonstrated dose-dependent inhibition of <i>H. pylori</i> growth following exposure to sea grape extract. Furthermore, untargeted intracellular metabolomic profiling of <i>H. pylori</i> cells treated with the extract uncovered significant perturbations in central carbon and nitrogen metabolism, including pathways associated with the tricarboxylic acid (TCA) cycle, one-carbon metabolism, and alanine, aspartate, and glutamate metabolism. Pyrimidine biosynthesis was selectively upregulated, indicating a potential stress-induced shift toward nucleotide salvage and DNA repair. Of particular note, succinate levels were markedly reduced despite accumulation of other TCA intermediates, suggesting disruption of electron transport-linked respiration. These findings suggest that bioactive metabolites from <i>C. lentillifera</i> impair essential metabolic processes in <i>H. pylori</i>, highlighting its potential as a natural source of antimicrobial agents targeting bacterial physiology.</p>","PeriodicalId":18222,"journal":{"name":"Marine Drugs","volume":"23 7","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metabolomic Profiling and Anti-<i>Helicobacter pylori</i> Activity of <i>Caulerpa lentillifera</i> (Sea Grape) Extract.\",\"authors\":\"Chananchida Thacharoen, Thisirak Inkaewwong, Watthanachai Jumpathong, Pornchai Kaewsapsak, Thiravat Rattanapot, Tippapha Pisithkul\",\"doi\":\"10.3390/md23070282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Helicobacter pylori</i> is a gastric pathogen implicated in peptic ulcer disease and gastric cancer. The increasing prevalence of antibiotic-resistant strains underscores the urgent need for alternative therapeutic strategies. In this study, we investigated the chemical composition and antibacterial activity of an aqueous extract from <i>Caulerpa lentillifera</i> (sea grape), a farm-cultivated edible green seaweed collected from Krabi Province, Thailand. Ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) revealed that the extract was enriched in bioactive nucleosides and phenolic compounds. In vitro assays demonstrated dose-dependent inhibition of <i>H. pylori</i> growth following exposure to sea grape extract. Furthermore, untargeted intracellular metabolomic profiling of <i>H. pylori</i> cells treated with the extract uncovered significant perturbations in central carbon and nitrogen metabolism, including pathways associated with the tricarboxylic acid (TCA) cycle, one-carbon metabolism, and alanine, aspartate, and glutamate metabolism. Pyrimidine biosynthesis was selectively upregulated, indicating a potential stress-induced shift toward nucleotide salvage and DNA repair. Of particular note, succinate levels were markedly reduced despite accumulation of other TCA intermediates, suggesting disruption of electron transport-linked respiration. These findings suggest that bioactive metabolites from <i>C. lentillifera</i> impair essential metabolic processes in <i>H. pylori</i>, highlighting its potential as a natural source of antimicrobial agents targeting bacterial physiology.</p>\",\"PeriodicalId\":18222,\"journal\":{\"name\":\"Marine Drugs\",\"volume\":\"23 7\",\"pages\":\"\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Drugs\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/md23070282\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Drugs","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/md23070282","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

幽门螺杆菌是一种与消化性溃疡和胃癌有关的胃病原体。抗生素耐药菌株的日益流行强调了寻找替代治疗策略的迫切需要。在本研究中,我们研究了采自泰国甲米省的一种农场种植的可食用绿色海藻——海葡萄(Caulerpa lentillifera)的水提取物的化学成分和抗菌活性。超高效液相色谱-串联质谱(UHPLC-MS/MS)分析表明,提取物中含有丰富的生物活性核苷和酚类化合物。体外实验表明,暴露于海葡萄提取物后,幽门螺杆菌生长的剂量依赖性抑制。此外,经提取物处理的幽门螺杆菌细胞的非靶向细胞内代谢组学分析揭示了中心碳和氮代谢的显著扰动,包括与三羧酸(TCA)循环、单碳代谢以及丙氨酸、天冬氨酸和谷氨酸代谢相关的途径。嘧啶生物合成选择性上调,表明潜在的应激诱导向核苷酸挽救和DNA修复的转变。特别值得注意的是,尽管积累了其他TCA中间体,琥珀酸水平仍显着降低,这表明电子传递相关呼吸的破坏。这些发现表明,来自C. lentillifera的生物活性代谢物损害了幽门螺杆菌的基本代谢过程,突出了其作为针对细菌生理的抗菌药物的天然来源的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Metabolomic Profiling and Anti-Helicobacter pylori Activity of Caulerpa lentillifera (Sea Grape) Extract.

Helicobacter pylori is a gastric pathogen implicated in peptic ulcer disease and gastric cancer. The increasing prevalence of antibiotic-resistant strains underscores the urgent need for alternative therapeutic strategies. In this study, we investigated the chemical composition and antibacterial activity of an aqueous extract from Caulerpa lentillifera (sea grape), a farm-cultivated edible green seaweed collected from Krabi Province, Thailand. Ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) revealed that the extract was enriched in bioactive nucleosides and phenolic compounds. In vitro assays demonstrated dose-dependent inhibition of H. pylori growth following exposure to sea grape extract. Furthermore, untargeted intracellular metabolomic profiling of H. pylori cells treated with the extract uncovered significant perturbations in central carbon and nitrogen metabolism, including pathways associated with the tricarboxylic acid (TCA) cycle, one-carbon metabolism, and alanine, aspartate, and glutamate metabolism. Pyrimidine biosynthesis was selectively upregulated, indicating a potential stress-induced shift toward nucleotide salvage and DNA repair. Of particular note, succinate levels were markedly reduced despite accumulation of other TCA intermediates, suggesting disruption of electron transport-linked respiration. These findings suggest that bioactive metabolites from C. lentillifera impair essential metabolic processes in H. pylori, highlighting its potential as a natural source of antimicrobial agents targeting bacterial physiology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Marine Drugs
Marine Drugs 医学-医药化学
CiteScore
9.60
自引率
14.80%
发文量
671
审稿时长
1 months
期刊介绍: Marine Drugs (ISSN 1660-3397) publishes reviews, regular research papers and short notes on the research, development and production of drugs from the sea. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible, particularly synthetic procedures and characterization information for bioactive compounds. There is no restriction on the length of the experimental section.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信