Hyeon-Jeong Hwang, Hyeokjin Lim, Jae Sik Yu, Eun Seo Jang, Youngsang Nam, Yeo Jin Lee, Eun La Kim, Seonghwan Hwang, Seoung Rak Lee
{"title":"水葫芦菌相关真菌短孔青霉菌MSW10-1次生代谢产物的分离、鉴定及其对肝脏脂肪生成的抑制作用。","authors":"Hyeon-Jeong Hwang, Hyeokjin Lim, Jae Sik Yu, Eun Seo Jang, Youngsang Nam, Yeo Jin Lee, Eun La Kim, Seonghwan Hwang, Seoung Rak Lee","doi":"10.3390/md23070275","DOIUrl":null,"url":null,"abstract":"<p><p>Marine organism-associated microbes are an important source of structurally diverse and biologically active secondary metabolites exhibiting antimicrobial, anticancer, and anti-inflammatory activities. In this study, we investigated <i>Penicillium brevicompactum</i> MSW10-1, isolated from <i>Hydractinia echinata</i>, a marine invertebrate adapted to extreme intertidal and subtidal environments with variable temperature, salinity, and oxygen conditions. Through a combination of LC/MS-guided chemical analysis and chromatographic purification, eight secondary metabolites were isolated, including brevicolactones A (<b>1</b>) and B (<b>2</b>). The absolute chemical structures of <b>1</b> and <b>2</b> were determined based on NMR spectroscopic experiments, HR-ESIMS data, and quantum chemical ECD calculations. The isolated compounds (<b>1</b>-<b>8</b>) were evaluated for their ability to inhibit hepatic lipogenesis, a key process in lipid metabolism that is dysregulated in metabolic-dysfunction-associated steatotic liver disease. Furthermore, the inhibitory effects of the isolated compounds on lipid accumulation were further evaluated in primary mouse hepatocytes, using Oil Red O staining. These findings suggested that the isolated compounds may serve as promising candidates for the treatment of metabolic liver diseases associated with lipid dysregulation.</p>","PeriodicalId":18222,"journal":{"name":"Marine Drugs","volume":"23 7","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12300214/pdf/","citationCount":"0","resultStr":"{\"title\":\"Isolation and Characterization of Secondary Metabolites from <i>Hydractinia</i>-Associated Fungus, <i>Penicillium brevicompactum</i> MSW10-1, and Their Inhibitory Effects on Hepatic Lipogenesis.\",\"authors\":\"Hyeon-Jeong Hwang, Hyeokjin Lim, Jae Sik Yu, Eun Seo Jang, Youngsang Nam, Yeo Jin Lee, Eun La Kim, Seonghwan Hwang, Seoung Rak Lee\",\"doi\":\"10.3390/md23070275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Marine organism-associated microbes are an important source of structurally diverse and biologically active secondary metabolites exhibiting antimicrobial, anticancer, and anti-inflammatory activities. In this study, we investigated <i>Penicillium brevicompactum</i> MSW10-1, isolated from <i>Hydractinia echinata</i>, a marine invertebrate adapted to extreme intertidal and subtidal environments with variable temperature, salinity, and oxygen conditions. Through a combination of LC/MS-guided chemical analysis and chromatographic purification, eight secondary metabolites were isolated, including brevicolactones A (<b>1</b>) and B (<b>2</b>). The absolute chemical structures of <b>1</b> and <b>2</b> were determined based on NMR spectroscopic experiments, HR-ESIMS data, and quantum chemical ECD calculations. The isolated compounds (<b>1</b>-<b>8</b>) were evaluated for their ability to inhibit hepatic lipogenesis, a key process in lipid metabolism that is dysregulated in metabolic-dysfunction-associated steatotic liver disease. Furthermore, the inhibitory effects of the isolated compounds on lipid accumulation were further evaluated in primary mouse hepatocytes, using Oil Red O staining. These findings suggested that the isolated compounds may serve as promising candidates for the treatment of metabolic liver diseases associated with lipid dysregulation.</p>\",\"PeriodicalId\":18222,\"journal\":{\"name\":\"Marine Drugs\",\"volume\":\"23 7\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12300214/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Drugs\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/md23070275\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Drugs","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/md23070275","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Isolation and Characterization of Secondary Metabolites from Hydractinia-Associated Fungus, Penicillium brevicompactum MSW10-1, and Their Inhibitory Effects on Hepatic Lipogenesis.
Marine organism-associated microbes are an important source of structurally diverse and biologically active secondary metabolites exhibiting antimicrobial, anticancer, and anti-inflammatory activities. In this study, we investigated Penicillium brevicompactum MSW10-1, isolated from Hydractinia echinata, a marine invertebrate adapted to extreme intertidal and subtidal environments with variable temperature, salinity, and oxygen conditions. Through a combination of LC/MS-guided chemical analysis and chromatographic purification, eight secondary metabolites were isolated, including brevicolactones A (1) and B (2). The absolute chemical structures of 1 and 2 were determined based on NMR spectroscopic experiments, HR-ESIMS data, and quantum chemical ECD calculations. The isolated compounds (1-8) were evaluated for their ability to inhibit hepatic lipogenesis, a key process in lipid metabolism that is dysregulated in metabolic-dysfunction-associated steatotic liver disease. Furthermore, the inhibitory effects of the isolated compounds on lipid accumulation were further evaluated in primary mouse hepatocytes, using Oil Red O staining. These findings suggested that the isolated compounds may serve as promising candidates for the treatment of metabolic liver diseases associated with lipid dysregulation.
期刊介绍:
Marine Drugs (ISSN 1660-3397) publishes reviews, regular research papers and short notes on the research, development and production of drugs from the sea. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible, particularly synthetic procedures and characterization information for bioactive compounds. There is no restriction on the length of the experimental section.