{"title":"利用三维磨损分析体外评估人工牙材料磨损行为。","authors":"Sıla Yelekçi, Ayben Şentürk, Funda Akaltan","doi":"10.3390/jfb16070264","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Artificial tooth wear impacts prosthesis durability and function; understanding material-antagonist interactions guides clinical choices.</p><p><strong>Aim: </strong>This in-vitro study aimed to assess the wear behavior of isosit and nanohybrid composite resin artificial teeth when opposed to various antagonist materials using 3D volumetric wear analysis.</p><p><strong>Materials and methods: </strong>Sixty specimens (<i>n</i> = 10 per group) were prepared from two artificial tooth materials and assigned to six antagonist combinations: isosit-isosit, isosit-nanohybrid composite, isosit-porcelain, nanohybrid composite-isosit, nanohybrid composite-nanohybrid composite, and nanohybrid composite-porcelain. Specimens were scanned before and after 600,000 chewing cycles using a structured-light 3D scanner. Volumetric wear was calculated by superimposing pre- and post-test scans. Data were analyzed using two-way ANOVA and Tukey's HSD test (α = 0.05).</p><p><strong>Results: </strong>Porcelain antagonists produced the highest wear values (<i>p</i> < 0.05). No significant difference was found between isosit and nanohybrid antagonists (<i>p</i> > 0.05). Identical material pairings showed less wear, though differences were not statistically significant.</p><p><strong>Conclusions: </strong>Porcelain as an antagonist increased wear risk. Using identical materials bilaterally, such as isosit-isosit or nanohybrid-nanohybrid, may help reduce artificial tooth wear in removable prostheses.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"16 7","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12295959/pdf/","citationCount":"0","resultStr":"{\"title\":\"In-Vitro Assessment of Artificial Tooth Material Wear Behavior Using 3D Wear Analysis.\",\"authors\":\"Sıla Yelekçi, Ayben Şentürk, Funda Akaltan\",\"doi\":\"10.3390/jfb16070264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Artificial tooth wear impacts prosthesis durability and function; understanding material-antagonist interactions guides clinical choices.</p><p><strong>Aim: </strong>This in-vitro study aimed to assess the wear behavior of isosit and nanohybrid composite resin artificial teeth when opposed to various antagonist materials using 3D volumetric wear analysis.</p><p><strong>Materials and methods: </strong>Sixty specimens (<i>n</i> = 10 per group) were prepared from two artificial tooth materials and assigned to six antagonist combinations: isosit-isosit, isosit-nanohybrid composite, isosit-porcelain, nanohybrid composite-isosit, nanohybrid composite-nanohybrid composite, and nanohybrid composite-porcelain. Specimens were scanned before and after 600,000 chewing cycles using a structured-light 3D scanner. Volumetric wear was calculated by superimposing pre- and post-test scans. Data were analyzed using two-way ANOVA and Tukey's HSD test (α = 0.05).</p><p><strong>Results: </strong>Porcelain antagonists produced the highest wear values (<i>p</i> < 0.05). No significant difference was found between isosit and nanohybrid antagonists (<i>p</i> > 0.05). Identical material pairings showed less wear, though differences were not statistically significant.</p><p><strong>Conclusions: </strong>Porcelain as an antagonist increased wear risk. Using identical materials bilaterally, such as isosit-isosit or nanohybrid-nanohybrid, may help reduce artificial tooth wear in removable prostheses.</p>\",\"PeriodicalId\":15767,\"journal\":{\"name\":\"Journal of Functional Biomaterials\",\"volume\":\"16 7\",\"pages\":\"\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12295959/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/jfb16070264\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb16070264","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Aim: This in-vitro study aimed to assess the wear behavior of isosit and nanohybrid composite resin artificial teeth when opposed to various antagonist materials using 3D volumetric wear analysis.
Materials and methods: Sixty specimens (n = 10 per group) were prepared from two artificial tooth materials and assigned to six antagonist combinations: isosit-isosit, isosit-nanohybrid composite, isosit-porcelain, nanohybrid composite-isosit, nanohybrid composite-nanohybrid composite, and nanohybrid composite-porcelain. Specimens were scanned before and after 600,000 chewing cycles using a structured-light 3D scanner. Volumetric wear was calculated by superimposing pre- and post-test scans. Data were analyzed using two-way ANOVA and Tukey's HSD test (α = 0.05).
Results: Porcelain antagonists produced the highest wear values (p < 0.05). No significant difference was found between isosit and nanohybrid antagonists (p > 0.05). Identical material pairings showed less wear, though differences were not statistically significant.
Conclusions: Porcelain as an antagonist increased wear risk. Using identical materials bilaterally, such as isosit-isosit or nanohybrid-nanohybrid, may help reduce artificial tooth wear in removable prostheses.
期刊介绍:
Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.