Kristina Lotamõis, Tiina Uuetoa, Andrei Krivošei, Paul Annus, Margus Metshein, Marek Rist, Sulev Margus, Mart Min, Gert Tamberg
{"title":"基于径向电阻抗波形的冠状动脉导管插管患者动脉脉搏波时间特征分析及脉搏波速度计算。","authors":"Kristina Lotamõis, Tiina Uuetoa, Andrei Krivošei, Paul Annus, Margus Metshein, Marek Rist, Sulev Margus, Mart Min, Gert Tamberg","doi":"10.3390/jcdd12070237","DOIUrl":null,"url":null,"abstract":"<p><p>The monitoring of peripheral electrical bioimpedance (EBI) variations is a promising method that has the potential to replace invasive or burdensome techniques for cardiovascular measurements. Segmental or continuous recording of peripheral pulse waves can serve as a basis for calculating prognostic markers like pulse wave velocity (PWV) or include parameters such as pulse transit time (PTT) or pulse arrival time (PAT) for noninvasive blood pressure (BP) estimation, as well as potentially novel cardiovascular risk indicators. However, several technical, analytical, and interpretative aspects need to be resolved before the EBI method can be adopted in clinical practice. Our goal was to investigate and improve the application of EBI, executing its comparison with other cardiovascular assessment methods in patients hospitalized for coronary catheterization procedures.</p><p><strong>Methods: </strong>We analyzed data from 44 non-acute patients aged 45-74 years who were hospitalized for coronary catheterization at East Tallinn Central Hospital between 2020 and 2021. The radial EBI and electrocardiogram (ECG) were measured simultaneously with central and contralateral pressure curves. The Savitzky-Golay filter was used for signal smoothing. The Hankel matrix decomposer was applied for the extraction of cardiac waveforms from multi-component signals. After extracting the cardiac component, a period detection algorithm was applied to EBI and blood pressure curves.</p><p><strong>Results: </strong>Seven points of interest were detected on the pressure and EBI curves, and four with good representativeness were selected for further analysis. The Spearman correlation coefficient was low for all but the central and distal pressure curve systolic upstroke time points. A high positive correlation was found between PWV measured both invasively and with EBI. The median value of complimentary pulse wave velocity (CPWV), a parameter proposed in the paper, was significantly lower in patients with normal coronaries compared to patients with any stage of coronary disease.</p><p><strong>Conclusions: </strong>With regard to wearable devices, the EBI-derived PAT can serve as a substrate for PWV calculations and cardiovascular risk assessment, although these data require further confirmation.</p>","PeriodicalId":15197,"journal":{"name":"Journal of Cardiovascular Development and Disease","volume":"12 7","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Analysis of Arterial Pulse Wave Time Features and Pulse Wave Velocity Calculations Based on Radial Electrical Bioimpedance Waveforms in Patients Scheduled for Coronary Catheterization.\",\"authors\":\"Kristina Lotamõis, Tiina Uuetoa, Andrei Krivošei, Paul Annus, Margus Metshein, Marek Rist, Sulev Margus, Mart Min, Gert Tamberg\",\"doi\":\"10.3390/jcdd12070237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The monitoring of peripheral electrical bioimpedance (EBI) variations is a promising method that has the potential to replace invasive or burdensome techniques for cardiovascular measurements. Segmental or continuous recording of peripheral pulse waves can serve as a basis for calculating prognostic markers like pulse wave velocity (PWV) or include parameters such as pulse transit time (PTT) or pulse arrival time (PAT) for noninvasive blood pressure (BP) estimation, as well as potentially novel cardiovascular risk indicators. However, several technical, analytical, and interpretative aspects need to be resolved before the EBI method can be adopted in clinical practice. Our goal was to investigate and improve the application of EBI, executing its comparison with other cardiovascular assessment methods in patients hospitalized for coronary catheterization procedures.</p><p><strong>Methods: </strong>We analyzed data from 44 non-acute patients aged 45-74 years who were hospitalized for coronary catheterization at East Tallinn Central Hospital between 2020 and 2021. The radial EBI and electrocardiogram (ECG) were measured simultaneously with central and contralateral pressure curves. The Savitzky-Golay filter was used for signal smoothing. The Hankel matrix decomposer was applied for the extraction of cardiac waveforms from multi-component signals. After extracting the cardiac component, a period detection algorithm was applied to EBI and blood pressure curves.</p><p><strong>Results: </strong>Seven points of interest were detected on the pressure and EBI curves, and four with good representativeness were selected for further analysis. The Spearman correlation coefficient was low for all but the central and distal pressure curve systolic upstroke time points. A high positive correlation was found between PWV measured both invasively and with EBI. The median value of complimentary pulse wave velocity (CPWV), a parameter proposed in the paper, was significantly lower in patients with normal coronaries compared to patients with any stage of coronary disease.</p><p><strong>Conclusions: </strong>With regard to wearable devices, the EBI-derived PAT can serve as a substrate for PWV calculations and cardiovascular risk assessment, although these data require further confirmation.</p>\",\"PeriodicalId\":15197,\"journal\":{\"name\":\"Journal of Cardiovascular Development and Disease\",\"volume\":\"12 7\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cardiovascular Development and Disease\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/jcdd12070237\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cardiovascular Development and Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/jcdd12070237","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
An Analysis of Arterial Pulse Wave Time Features and Pulse Wave Velocity Calculations Based on Radial Electrical Bioimpedance Waveforms in Patients Scheduled for Coronary Catheterization.
The monitoring of peripheral electrical bioimpedance (EBI) variations is a promising method that has the potential to replace invasive or burdensome techniques for cardiovascular measurements. Segmental or continuous recording of peripheral pulse waves can serve as a basis for calculating prognostic markers like pulse wave velocity (PWV) or include parameters such as pulse transit time (PTT) or pulse arrival time (PAT) for noninvasive blood pressure (BP) estimation, as well as potentially novel cardiovascular risk indicators. However, several technical, analytical, and interpretative aspects need to be resolved before the EBI method can be adopted in clinical practice. Our goal was to investigate and improve the application of EBI, executing its comparison with other cardiovascular assessment methods in patients hospitalized for coronary catheterization procedures.
Methods: We analyzed data from 44 non-acute patients aged 45-74 years who were hospitalized for coronary catheterization at East Tallinn Central Hospital between 2020 and 2021. The radial EBI and electrocardiogram (ECG) were measured simultaneously with central and contralateral pressure curves. The Savitzky-Golay filter was used for signal smoothing. The Hankel matrix decomposer was applied for the extraction of cardiac waveforms from multi-component signals. After extracting the cardiac component, a period detection algorithm was applied to EBI and blood pressure curves.
Results: Seven points of interest were detected on the pressure and EBI curves, and four with good representativeness were selected for further analysis. The Spearman correlation coefficient was low for all but the central and distal pressure curve systolic upstroke time points. A high positive correlation was found between PWV measured both invasively and with EBI. The median value of complimentary pulse wave velocity (CPWV), a parameter proposed in the paper, was significantly lower in patients with normal coronaries compared to patients with any stage of coronary disease.
Conclusions: With regard to wearable devices, the EBI-derived PAT can serve as a substrate for PWV calculations and cardiovascular risk assessment, although these data require further confirmation.