多发性硬化症患者和健康对照者行走和避障时的脑连通性:一项初步脑电图研究

IF 5.2 2区 医学 Q2 ENGINEERING, BIOMEDICAL
Fares Al-Shargie, Michael Glassen, John DeLuca, Soha Saleh
{"title":"多发性硬化症患者和健康对照者行走和避障时的脑连通性:一项初步脑电图研究","authors":"Fares Al-Shargie, Michael Glassen, John DeLuca, Soha Saleh","doi":"10.1109/TNSRE.2025.3592492","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigated effective connectivity and hemispheric asymmetry in persons with multiple sclerosis (pwMS) compared to healthy controls (HC) during two walking conditions: walking alone and walking while avoiding unpredictable obstacles. Cognitive-motor interference (CMI) was analyzed using electroencephalography (EEG) across beta, alpha, and theta frequency bands. Directed functional connectivity was estimated using partial directed coherence (PDC) to assess differences in connectivity patterns between conditions and groups. In healthy controls, obstacle avoidance increased connectivity in motor and cognitive regions including left central (LC), left temporal (LT), and right frontal (RF) regions, p<0.0014. In contrast, pwMS demonstrated weaker and more localized connectivity, primarily in the left central regions (sensorimotor cortices) p<0.0013, suggesting reduced efficiency in brain networks and compensatory mechanisms to maintain task performance. Further, pwMS showed left laterality toward the central region during both walking conditions compared to HC, p<0.05. Correlational analysis revealed that connectivity during obstacle avoidance in HC positively correlated with comfortable walking speed (r = 0.57), indicating efficient neural pathways. In pwMS, connectivity showed a negative correlation with walking speed (r = -0.65), indicating compensatory but inefficient neural engagement. These findings highlight disruptions in brain connectivity during motor-cognitive tasks in pwMS, with potential implications for designing targeted rehabilitation strategies to improve gait and neural efficiency.</p>","PeriodicalId":13419,"journal":{"name":"IEEE Transactions on Neural Systems and Rehabilitation Engineering","volume":"PP ","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Brain Connectivity During Walking and Obstacle Avoidance in Persons with Multiple Sclerosis and Healthy Controls: A Pilot EEG Study.\",\"authors\":\"Fares Al-Shargie, Michael Glassen, John DeLuca, Soha Saleh\",\"doi\":\"10.1109/TNSRE.2025.3592492\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study investigated effective connectivity and hemispheric asymmetry in persons with multiple sclerosis (pwMS) compared to healthy controls (HC) during two walking conditions: walking alone and walking while avoiding unpredictable obstacles. Cognitive-motor interference (CMI) was analyzed using electroencephalography (EEG) across beta, alpha, and theta frequency bands. Directed functional connectivity was estimated using partial directed coherence (PDC) to assess differences in connectivity patterns between conditions and groups. In healthy controls, obstacle avoidance increased connectivity in motor and cognitive regions including left central (LC), left temporal (LT), and right frontal (RF) regions, p<0.0014. In contrast, pwMS demonstrated weaker and more localized connectivity, primarily in the left central regions (sensorimotor cortices) p<0.0013, suggesting reduced efficiency in brain networks and compensatory mechanisms to maintain task performance. Further, pwMS showed left laterality toward the central region during both walking conditions compared to HC, p<0.05. Correlational analysis revealed that connectivity during obstacle avoidance in HC positively correlated with comfortable walking speed (r = 0.57), indicating efficient neural pathways. In pwMS, connectivity showed a negative correlation with walking speed (r = -0.65), indicating compensatory but inefficient neural engagement. These findings highlight disruptions in brain connectivity during motor-cognitive tasks in pwMS, with potential implications for designing targeted rehabilitation strategies to improve gait and neural efficiency.</p>\",\"PeriodicalId\":13419,\"journal\":{\"name\":\"IEEE Transactions on Neural Systems and Rehabilitation Engineering\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Neural Systems and Rehabilitation Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/TNSRE.2025.3592492\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Neural Systems and Rehabilitation Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TNSRE.2025.3592492","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究调查了多发性硬化症(pwMS)患者与健康对照组(HC)在两种行走条件下的有效连通性和半球不对称性:单独行走和避免不可预测的障碍物行走。认知-运动干扰(CMI)采用脑电图(EEG)跨β、α和θ频段进行分析。定向功能连通性估计使用部分定向相干性(PDC)来评估条件和组之间连接模式的差异。在健康对照中,避障增加了运动和认知区域的连通性,包括左中央(LC)、左颞(LT)和右额叶(RF)区域
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Brain Connectivity During Walking and Obstacle Avoidance in Persons with Multiple Sclerosis and Healthy Controls: A Pilot EEG Study.

This study investigated effective connectivity and hemispheric asymmetry in persons with multiple sclerosis (pwMS) compared to healthy controls (HC) during two walking conditions: walking alone and walking while avoiding unpredictable obstacles. Cognitive-motor interference (CMI) was analyzed using electroencephalography (EEG) across beta, alpha, and theta frequency bands. Directed functional connectivity was estimated using partial directed coherence (PDC) to assess differences in connectivity patterns between conditions and groups. In healthy controls, obstacle avoidance increased connectivity in motor and cognitive regions including left central (LC), left temporal (LT), and right frontal (RF) regions, p<0.0014. In contrast, pwMS demonstrated weaker and more localized connectivity, primarily in the left central regions (sensorimotor cortices) p<0.0013, suggesting reduced efficiency in brain networks and compensatory mechanisms to maintain task performance. Further, pwMS showed left laterality toward the central region during both walking conditions compared to HC, p<0.05. Correlational analysis revealed that connectivity during obstacle avoidance in HC positively correlated with comfortable walking speed (r = 0.57), indicating efficient neural pathways. In pwMS, connectivity showed a negative correlation with walking speed (r = -0.65), indicating compensatory but inefficient neural engagement. These findings highlight disruptions in brain connectivity during motor-cognitive tasks in pwMS, with potential implications for designing targeted rehabilitation strategies to improve gait and neural efficiency.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.60
自引率
8.20%
发文量
479
审稿时长
6-12 weeks
期刊介绍: Rehabilitative and neural aspects of biomedical engineering, including functional electrical stimulation, acoustic dynamics, human performance measurement and analysis, nerve stimulation, electromyography, motor control and stimulation; and hardware and software applications for rehabilitation engineering and assistive devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信