34种天然生物碱的抗氧化性能:密度泛函理论研究。

IF 2.9 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Free Radical Research Pub Date : 2025-05-01 Epub Date: 2025-07-31 DOI:10.1080/10715762.2025.2539764
Andrey A Buglak, Taisiya A Telegina
{"title":"34种天然生物碱的抗氧化性能:密度泛函理论研究。","authors":"Andrey A Buglak, Taisiya A Telegina","doi":"10.1080/10715762.2025.2539764","DOIUrl":null,"url":null,"abstract":"<p><p>The antioxidant properties of 34 plant alkaloids in gas phase, ethanol and water have been evaluated using density functional theory (DFT). The computations have been made according to three different single electron mechanisms: (1) H-atom transfer (HAT); (2) electron transfer followed by H<sup>+</sup> transfer (SET-PT); and (3) sequential H<sup>+</sup>-loss electron transfer (SPLET). As a result, the highest antioxidant activity was established for evodiamine. Global reactivity in terms of hardness/softness has been calculated also, as well as Fukui indices of local reactivity. Structural aspects related to H, electron and proton loss have been regarded in sufficient details. In terms of global softness, palmatine, dehydroevodiamine and chelerythrine have been determined as the most reactive molecules, whereas C7 atom of evodiamine has been found to be the most reactive atom. All the findings are in agreement with the recent experimental and theoretical studies on alkaloid antioxidant activity and can be compared with the results for ascorbic acid, which was used as a reference compound.</p>","PeriodicalId":12411,"journal":{"name":"Free Radical Research","volume":" ","pages":"531-544"},"PeriodicalIF":2.9000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antioxidant properties of 34 alkaloids of natural origin: a density functional theory study.\",\"authors\":\"Andrey A Buglak, Taisiya A Telegina\",\"doi\":\"10.1080/10715762.2025.2539764\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The antioxidant properties of 34 plant alkaloids in gas phase, ethanol and water have been evaluated using density functional theory (DFT). The computations have been made according to three different single electron mechanisms: (1) H-atom transfer (HAT); (2) electron transfer followed by H<sup>+</sup> transfer (SET-PT); and (3) sequential H<sup>+</sup>-loss electron transfer (SPLET). As a result, the highest antioxidant activity was established for evodiamine. Global reactivity in terms of hardness/softness has been calculated also, as well as Fukui indices of local reactivity. Structural aspects related to H, electron and proton loss have been regarded in sufficient details. In terms of global softness, palmatine, dehydroevodiamine and chelerythrine have been determined as the most reactive molecules, whereas C7 atom of evodiamine has been found to be the most reactive atom. All the findings are in agreement with the recent experimental and theoretical studies on alkaloid antioxidant activity and can be compared with the results for ascorbic acid, which was used as a reference compound.</p>\",\"PeriodicalId\":12411,\"journal\":{\"name\":\"Free Radical Research\",\"volume\":\" \",\"pages\":\"531-544\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Free Radical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/10715762.2025.2539764\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Free Radical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/10715762.2025.2539764","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/31 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

采用密度泛函理论(DFT)评价了34种植物生物碱在气相、乙醇和水中的抗氧化性能。根据三种不同的单电子机制进行了计算:1)h原子转移(HAT);2)电子转移后是H+转移(SET-PT);3)顺序H+损失电子转移(SPLET)。结果表明,evoldiamine的抗氧化活性最高。还计算了硬度/柔软度方面的总体反应性,以及局部反应性的福井指数。与氢、电子和质子损失有关的结构方面已经得到了足够详细的考虑。在整体柔软度方面,确定了棕榈碱、脱氢evolodiamine和车车红碱是最活跃的分子,而evolodiamine的C7原子是最活跃的原子。这些结果与近年来生物碱抗氧化活性的实验和理论研究结果一致,并可与作为参比化合物的抗坏血酸的结果进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Antioxidant properties of 34 alkaloids of natural origin: a density functional theory study.

The antioxidant properties of 34 plant alkaloids in gas phase, ethanol and water have been evaluated using density functional theory (DFT). The computations have been made according to three different single electron mechanisms: (1) H-atom transfer (HAT); (2) electron transfer followed by H+ transfer (SET-PT); and (3) sequential H+-loss electron transfer (SPLET). As a result, the highest antioxidant activity was established for evodiamine. Global reactivity in terms of hardness/softness has been calculated also, as well as Fukui indices of local reactivity. Structural aspects related to H, electron and proton loss have been regarded in sufficient details. In terms of global softness, palmatine, dehydroevodiamine and chelerythrine have been determined as the most reactive molecules, whereas C7 atom of evodiamine has been found to be the most reactive atom. All the findings are in agreement with the recent experimental and theoretical studies on alkaloid antioxidant activity and can be compared with the results for ascorbic acid, which was used as a reference compound.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Free Radical Research
Free Radical Research 生物-生化与分子生物学
CiteScore
6.70
自引率
0.00%
发文量
47
审稿时长
3 months
期刊介绍: Free Radical Research publishes high-quality research papers, hypotheses and reviews in free radicals and other reactive species in biological, clinical, environmental and other systems; redox signalling; antioxidants, including diet-derived antioxidants and other relevant aspects of human nutrition; and oxidative damage, mechanisms and measurement.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信