微生物组-代谢组数据整合策略的系统基准。

IF 5.2 1区 生物学 Q1 BIOLOGY
Loïc Mangnier, Antoine Bodein, Margaux Mariaz, Alban Mathieu, Marie-Pier Scott-Boyer, Neerja Vashist, Matthew S Bramble, Arnaud Droit
{"title":"微生物组-代谢组数据整合策略的系统基准。","authors":"Loïc Mangnier, Antoine Bodein, Margaux Mariaz, Alban Mathieu, Marie-Pier Scott-Boyer, Neerja Vashist, Matthew S Bramble, Arnaud Droit","doi":"10.1038/s42003-025-08515-9","DOIUrl":null,"url":null,"abstract":"<p><p>The rapid advancement of high-throughput sequencing technologies has enabled the integration of various omic layers into computational frameworks. Among these, metagenomics and metabolomics are increasingly studied for their roles in complex diseases. However, no standard currently exists for jointly integrating microbiome and metabolome datasets within statistical models. We benchmarked nineteen integrative methods to disentangle the relationships between microorganisms and metabolites. These methods address key research goals, including global associations, data summarization, individual associations, and feature selection. Through realistic simulations, we identified the best-performing methods and validated them on real gut microbiome datasets, revealing complementary biological processes across the two omic layers. Practical guidelines are provided for specific scientific questions and data types. This work establishes a foundation for research standards in metagenomics-metabolomics integration and supports future methodological developments, while also providing guidance for designing optimal analytical strategies tailored to specific integration questions.</p>","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":"8 1","pages":"1100"},"PeriodicalIF":5.2000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A systematic benchmark of integrative strategies for microbiome-metabolome data.\",\"authors\":\"Loïc Mangnier, Antoine Bodein, Margaux Mariaz, Alban Mathieu, Marie-Pier Scott-Boyer, Neerja Vashist, Matthew S Bramble, Arnaud Droit\",\"doi\":\"10.1038/s42003-025-08515-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The rapid advancement of high-throughput sequencing technologies has enabled the integration of various omic layers into computational frameworks. Among these, metagenomics and metabolomics are increasingly studied for their roles in complex diseases. However, no standard currently exists for jointly integrating microbiome and metabolome datasets within statistical models. We benchmarked nineteen integrative methods to disentangle the relationships between microorganisms and metabolites. These methods address key research goals, including global associations, data summarization, individual associations, and feature selection. Through realistic simulations, we identified the best-performing methods and validated them on real gut microbiome datasets, revealing complementary biological processes across the two omic layers. Practical guidelines are provided for specific scientific questions and data types. This work establishes a foundation for research standards in metagenomics-metabolomics integration and supports future methodological developments, while also providing guidance for designing optimal analytical strategies tailored to specific integration questions.</p>\",\"PeriodicalId\":10552,\"journal\":{\"name\":\"Communications Biology\",\"volume\":\"8 1\",\"pages\":\"1100\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s42003-025-08515-9\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s42003-025-08515-9","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

高通量测序技术的快速发展使得各种基因组层集成到计算框架中成为可能。其中,宏基因组学和代谢组学因其在复杂疾病中的作用而受到越来越多的研究。然而,目前还没有在统计模型中联合整合微生物组和代谢组数据集的标准。我们对19种综合方法进行了基准测试,以解开微生物和代谢物之间的关系。这些方法解决了关键的研究目标,包括全局关联、数据汇总、个体关联和特征选择。通过现实模拟,我们确定了性能最佳的方法,并在真实的肠道微生物组数据集上验证了它们,揭示了两个组学层之间互补的生物学过程。为具体的科学问题和数据类型提供了实用指南。这项工作为宏基因组学-代谢组学整合的研究标准奠定了基础,并支持了未来的方法发展,同时也为设计针对特定整合问题的最佳分析策略提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A systematic benchmark of integrative strategies for microbiome-metabolome data.

The rapid advancement of high-throughput sequencing technologies has enabled the integration of various omic layers into computational frameworks. Among these, metagenomics and metabolomics are increasingly studied for their roles in complex diseases. However, no standard currently exists for jointly integrating microbiome and metabolome datasets within statistical models. We benchmarked nineteen integrative methods to disentangle the relationships between microorganisms and metabolites. These methods address key research goals, including global associations, data summarization, individual associations, and feature selection. Through realistic simulations, we identified the best-performing methods and validated them on real gut microbiome datasets, revealing complementary biological processes across the two omic layers. Practical guidelines are provided for specific scientific questions and data types. This work establishes a foundation for research standards in metagenomics-metabolomics integration and supports future methodological developments, while also providing guidance for designing optimal analytical strategies tailored to specific integration questions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications Biology
Communications Biology Medicine-Medicine (miscellaneous)
CiteScore
8.60
自引率
1.70%
发文量
1233
审稿时长
13 weeks
期刊介绍: Communications Biology is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the biological sciences. Research papers published by the journal represent significant advances bringing new biological insight to a specialized area of research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信