Chenzheng Wang, Qiang Huang, Xuechao Chen, Zeyu Zhang, Jing Shi
{"title":"基于混合强化学习的人形局部操作鲁棒视觉运动控制。","authors":"Chenzheng Wang, Qiang Huang, Xuechao Chen, Zeyu Zhang, Jing Shi","doi":"10.3390/biomimetics10070469","DOIUrl":null,"url":null,"abstract":"<p><p>Loco-manipulation tasks using humanoid robots have great practical value in various scenarios. While reinforcement learning (RL) has become a powerful tool for versatile and robust whole-body humanoid control, visuomotor control in loco-manipulation tasks with RL remains a great challenge due to their high dimensionality and long-horizon exploration issues. In this paper, we propose a loco-manipulation control framework for humanoid robots that utilizes model-free RL upon model-based control in the robot's tasks space. It implements a visuomotor policy with depth-image input, and uses mid-way initialization and prioritized experience sampling to accelerate policy convergence. The proposed method is validated on typical loco-manipulation tasks of load carrying and door opening resulting in an overall success rate of 83%, where our framework automatically adjusts the robot motion in reaction to changes in the environment.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 7","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust Visuomotor Control for Humanoid Loco-Manipulation Using Hybrid Reinforcement Learning.\",\"authors\":\"Chenzheng Wang, Qiang Huang, Xuechao Chen, Zeyu Zhang, Jing Shi\",\"doi\":\"10.3390/biomimetics10070469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Loco-manipulation tasks using humanoid robots have great practical value in various scenarios. While reinforcement learning (RL) has become a powerful tool for versatile and robust whole-body humanoid control, visuomotor control in loco-manipulation tasks with RL remains a great challenge due to their high dimensionality and long-horizon exploration issues. In this paper, we propose a loco-manipulation control framework for humanoid robots that utilizes model-free RL upon model-based control in the robot's tasks space. It implements a visuomotor policy with depth-image input, and uses mid-way initialization and prioritized experience sampling to accelerate policy convergence. The proposed method is validated on typical loco-manipulation tasks of load carrying and door opening resulting in an overall success rate of 83%, where our framework automatically adjusts the robot motion in reaction to changes in the environment.</p>\",\"PeriodicalId\":8907,\"journal\":{\"name\":\"Biomimetics\",\"volume\":\"10 7\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomimetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/biomimetics10070469\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10070469","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Robust Visuomotor Control for Humanoid Loco-Manipulation Using Hybrid Reinforcement Learning.
Loco-manipulation tasks using humanoid robots have great practical value in various scenarios. While reinforcement learning (RL) has become a powerful tool for versatile and robust whole-body humanoid control, visuomotor control in loco-manipulation tasks with RL remains a great challenge due to their high dimensionality and long-horizon exploration issues. In this paper, we propose a loco-manipulation control framework for humanoid robots that utilizes model-free RL upon model-based control in the robot's tasks space. It implements a visuomotor policy with depth-image input, and uses mid-way initialization and prioritized experience sampling to accelerate policy convergence. The proposed method is validated on typical loco-manipulation tasks of load carrying and door opening resulting in an overall success rate of 83%, where our framework automatically adjusts the robot motion in reaction to changes in the environment.