{"title":"点参考数据空间混淆的两阶段估计。","authors":"Nate Wiecha, Jane A Hoppin, Brian J Reich","doi":"10.1093/biomtc/ujaf093","DOIUrl":null,"url":null,"abstract":"<p><p>Public health data are often spatially dependent, but standard spatial regression methods can suffer from bias and invalid inference when the independent variable is associated with spatially correlated residuals. This could occur if, for example, there is an unmeasured environmental contaminant associated with the independent and outcome variables in a spatial regression analysis. Geoadditive structural equation modeling (gSEM), in which an estimated spatial trend is removed from both the explanatory and response variables before estimating the parameters of interest, has previously been proposed as a solution but there has been little investigation of gSEM's properties with point-referenced data. We link gSEM to results on double machine learning and semiparametric regression based on two-stage procedures. We propose using these semiparametric estimators for spatial regression using Gaussian processes with Matèrn covariance to estimate the spatial trends and term this class of estimators double spatial regression (DSR). We derive regularity conditions for root-n asymptotic normality and consistency and closed-form variance estimation, and show that in simulations where standard spatial regression estimators are highly biased and have poor coverage, DSR can mitigate bias more effectively than competitors and obtain nominal coverage.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"81 3","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12288666/pdf/","citationCount":"0","resultStr":"{\"title\":\"Two-stage estimators for spatial confounding with point-referenced data.\",\"authors\":\"Nate Wiecha, Jane A Hoppin, Brian J Reich\",\"doi\":\"10.1093/biomtc/ujaf093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Public health data are often spatially dependent, but standard spatial regression methods can suffer from bias and invalid inference when the independent variable is associated with spatially correlated residuals. This could occur if, for example, there is an unmeasured environmental contaminant associated with the independent and outcome variables in a spatial regression analysis. Geoadditive structural equation modeling (gSEM), in which an estimated spatial trend is removed from both the explanatory and response variables before estimating the parameters of interest, has previously been proposed as a solution but there has been little investigation of gSEM's properties with point-referenced data. We link gSEM to results on double machine learning and semiparametric regression based on two-stage procedures. We propose using these semiparametric estimators for spatial regression using Gaussian processes with Matèrn covariance to estimate the spatial trends and term this class of estimators double spatial regression (DSR). We derive regularity conditions for root-n asymptotic normality and consistency and closed-form variance estimation, and show that in simulations where standard spatial regression estimators are highly biased and have poor coverage, DSR can mitigate bias more effectively than competitors and obtain nominal coverage.</p>\",\"PeriodicalId\":8930,\"journal\":{\"name\":\"Biometrics\",\"volume\":\"81 3\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12288666/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biomtc/ujaf093\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujaf093","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
Two-stage estimators for spatial confounding with point-referenced data.
Public health data are often spatially dependent, but standard spatial regression methods can suffer from bias and invalid inference when the independent variable is associated with spatially correlated residuals. This could occur if, for example, there is an unmeasured environmental contaminant associated with the independent and outcome variables in a spatial regression analysis. Geoadditive structural equation modeling (gSEM), in which an estimated spatial trend is removed from both the explanatory and response variables before estimating the parameters of interest, has previously been proposed as a solution but there has been little investigation of gSEM's properties with point-referenced data. We link gSEM to results on double machine learning and semiparametric regression based on two-stage procedures. We propose using these semiparametric estimators for spatial regression using Gaussian processes with Matèrn covariance to estimate the spatial trends and term this class of estimators double spatial regression (DSR). We derive regularity conditions for root-n asymptotic normality and consistency and closed-form variance estimation, and show that in simulations where standard spatial regression estimators are highly biased and have poor coverage, DSR can mitigate bias more effectively than competitors and obtain nominal coverage.
期刊介绍:
The International Biometric Society is an international society promoting the development and application of statistical and mathematical theory and methods in the biosciences, including agriculture, biomedical science and public health, ecology, environmental sciences, forestry, and allied disciplines. The Society welcomes as members statisticians, mathematicians, biological scientists, and others devoted to interdisciplinary efforts in advancing the collection and interpretation of information in the biosciences. The Society sponsors the biennial International Biometric Conference, held in sites throughout the world; through its National Groups and Regions, it also Society sponsors regional and local meetings.