具有相互作用的非线性因果发现的树型加性噪声有向无环图模型。

IF 1.7 4区 数学 Q3 BIOLOGY
Biometrics Pub Date : 2025-07-03 DOI:10.1093/biomtc/ujaf089
Fangting Zhou, Kejun He, Yang Ni
{"title":"具有相互作用的非线性因果发现的树型加性噪声有向无环图模型。","authors":"Fangting Zhou, Kejun He, Yang Ni","doi":"10.1093/biomtc/ujaf089","DOIUrl":null,"url":null,"abstract":"<p><p>Directed acyclic graphical models with additive noises are essential in nonlinear causal discovery and have numerous applications in various domains, such as social science and systems biology. Most such models further assume that structural causal functions are additive to ensure causal identifiability and computational feasibility, which may be too restrictive in the presence of causal interactions. Some methods consider general nonlinear causal functions represented by, for example, Gaussian processes and neural networks, to accommodate interactions. However, they are either computationally intensive or lack interpretability. We propose a highly interpretable and computationally feasible approach using trees to incorporate interactions in nonlinear causal discovery, termed tree-based additive noise models. The nature of the tree construction leads to piecewise constant causal functions, making existing causal identifiability results of additive noise models with continuous and smooth causal functions inapplicable. Therefore, we provide new conditions under which the proposed model is identifiable. We develop a recursive algorithm for source node identification and a score-based ordering search algorithm. Through extensive simulations, we demonstrate the utility of the proposed model and algorithms benchmarking against existing additive noise models, especially when there are strong causal interactions. Our method is applied to infer a protein-protein interaction network for breast cancer, where proteins may form protein complexes to perform their functions.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"81 3","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12288665/pdf/","citationCount":"0","resultStr":"{\"title\":\"Tree-based additive noise directed acyclic graphical models for nonlinear causal discovery with interactions.\",\"authors\":\"Fangting Zhou, Kejun He, Yang Ni\",\"doi\":\"10.1093/biomtc/ujaf089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Directed acyclic graphical models with additive noises are essential in nonlinear causal discovery and have numerous applications in various domains, such as social science and systems biology. Most such models further assume that structural causal functions are additive to ensure causal identifiability and computational feasibility, which may be too restrictive in the presence of causal interactions. Some methods consider general nonlinear causal functions represented by, for example, Gaussian processes and neural networks, to accommodate interactions. However, they are either computationally intensive or lack interpretability. We propose a highly interpretable and computationally feasible approach using trees to incorporate interactions in nonlinear causal discovery, termed tree-based additive noise models. The nature of the tree construction leads to piecewise constant causal functions, making existing causal identifiability results of additive noise models with continuous and smooth causal functions inapplicable. Therefore, we provide new conditions under which the proposed model is identifiable. We develop a recursive algorithm for source node identification and a score-based ordering search algorithm. Through extensive simulations, we demonstrate the utility of the proposed model and algorithms benchmarking against existing additive noise models, especially when there are strong causal interactions. Our method is applied to infer a protein-protein interaction network for breast cancer, where proteins may form protein complexes to perform their functions.</p>\",\"PeriodicalId\":8930,\"journal\":{\"name\":\"Biometrics\",\"volume\":\"81 3\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12288665/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biomtc/ujaf089\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujaf089","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

具有加性噪声的有向无环图模型在非线性因果发现中是必不可少的,在社会科学和系统生物学等各个领域都有广泛的应用。大多数这样的模型进一步假设结构因果函数是相加的,以确保因果可识别性和计算可行性,这在因果相互作用的存在下可能过于限制。一些方法考虑一般的非线性因果函数,例如,高斯过程和神经网络,以适应相互作用。然而,它们要么是计算密集型的,要么缺乏可解释性。我们提出了一种高度可解释和计算上可行的方法,使用树来结合非线性因果发现中的相互作用,称为基于树的加性噪声模型。由于树型结构的性质导致因果函数为分段常数,使得具有连续光滑因果函数的加性噪声模型的现有因果可辨识性结果不适用。因此,我们提供了新的条件,在这些条件下,所提议的模型是可识别的。我们开发了一种用于源节点识别的递归算法和一种基于分数的排序搜索算法。通过广泛的模拟,我们证明了所提出的模型和算法对现有的加性噪声模型的基准测试的实用性,特别是当存在强烈的因果相互作用时。我们的方法被应用于推断乳腺癌的蛋白质-蛋白质相互作用网络,其中蛋白质可能形成蛋白质复合物来执行其功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tree-based additive noise directed acyclic graphical models for nonlinear causal discovery with interactions.

Directed acyclic graphical models with additive noises are essential in nonlinear causal discovery and have numerous applications in various domains, such as social science and systems biology. Most such models further assume that structural causal functions are additive to ensure causal identifiability and computational feasibility, which may be too restrictive in the presence of causal interactions. Some methods consider general nonlinear causal functions represented by, for example, Gaussian processes and neural networks, to accommodate interactions. However, they are either computationally intensive or lack interpretability. We propose a highly interpretable and computationally feasible approach using trees to incorporate interactions in nonlinear causal discovery, termed tree-based additive noise models. The nature of the tree construction leads to piecewise constant causal functions, making existing causal identifiability results of additive noise models with continuous and smooth causal functions inapplicable. Therefore, we provide new conditions under which the proposed model is identifiable. We develop a recursive algorithm for source node identification and a score-based ordering search algorithm. Through extensive simulations, we demonstrate the utility of the proposed model and algorithms benchmarking against existing additive noise models, especially when there are strong causal interactions. Our method is applied to infer a protein-protein interaction network for breast cancer, where proteins may form protein complexes to perform their functions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biometrics
Biometrics 生物-生物学
CiteScore
2.70
自引率
5.30%
发文量
178
审稿时长
4-8 weeks
期刊介绍: The International Biometric Society is an international society promoting the development and application of statistical and mathematical theory and methods in the biosciences, including agriculture, biomedical science and public health, ecology, environmental sciences, forestry, and allied disciplines. The Society welcomes as members statisticians, mathematicians, biological scientists, and others devoted to interdisciplinary efforts in advancing the collection and interpretation of information in the biosciences. The Society sponsors the biennial International Biometric Conference, held in sites throughout the world; through its National Groups and Regions, it also Society sponsors regional and local meetings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信