Saijun Zhao, Peter F Thall, Ying Yuan, Juhee Lee, Pavlos Msaouel, Yong Zang
{"title":"精密广义I-II期设计。","authors":"Saijun Zhao, Peter F Thall, Ying Yuan, Juhee Lee, Pavlos Msaouel, Yong Zang","doi":"10.1093/biomtc/ujaf043","DOIUrl":null,"url":null,"abstract":"<p><p>A new family of precision Bayesian dose optimization designs, PGen I-II, based on early efficacy, early toxicity, and long-term time to treatment failure is proposed. A PGen I-II design refines a Gen I-II design by accounting for patient heterogeneity characterized by subgroups that may be defined by prognostic levels, disease subtypes, or biomarker categories. The design makes subgroup-specific decisions, which may be to drop an unacceptably toxic or inefficacious dose, randomize patients among acceptable doses, or identify a best dose in terms of treatment success defined in terms of time to failure over long-term follow-up. A piecewise exponential distribution for failure time is assumed, including subgroup-specific effects of dose, response, and toxicity. Latent variables are used to adaptively cluster subgroups found to have similar dose-outcome distributions, with the model simplified to borrow strength between subgroups in the same cluster. Guidelines and user-friendly computer software for implementing the design are provided. A simulation study is reported that shows the PGen I-II design is superior to similarly structured designs that either assume patient homogeneity or conduct separate trials within subgroups.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"81 3","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12288667/pdf/","citationCount":"0","resultStr":"{\"title\":\"Precision generalized phase I-II designs.\",\"authors\":\"Saijun Zhao, Peter F Thall, Ying Yuan, Juhee Lee, Pavlos Msaouel, Yong Zang\",\"doi\":\"10.1093/biomtc/ujaf043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A new family of precision Bayesian dose optimization designs, PGen I-II, based on early efficacy, early toxicity, and long-term time to treatment failure is proposed. A PGen I-II design refines a Gen I-II design by accounting for patient heterogeneity characterized by subgroups that may be defined by prognostic levels, disease subtypes, or biomarker categories. The design makes subgroup-specific decisions, which may be to drop an unacceptably toxic or inefficacious dose, randomize patients among acceptable doses, or identify a best dose in terms of treatment success defined in terms of time to failure over long-term follow-up. A piecewise exponential distribution for failure time is assumed, including subgroup-specific effects of dose, response, and toxicity. Latent variables are used to adaptively cluster subgroups found to have similar dose-outcome distributions, with the model simplified to borrow strength between subgroups in the same cluster. Guidelines and user-friendly computer software for implementing the design are provided. A simulation study is reported that shows the PGen I-II design is superior to similarly structured designs that either assume patient homogeneity or conduct separate trials within subgroups.</p>\",\"PeriodicalId\":8930,\"journal\":{\"name\":\"Biometrics\",\"volume\":\"81 3\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12288667/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biomtc/ujaf043\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujaf043","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
A new family of precision Bayesian dose optimization designs, PGen I-II, based on early efficacy, early toxicity, and long-term time to treatment failure is proposed. A PGen I-II design refines a Gen I-II design by accounting for patient heterogeneity characterized by subgroups that may be defined by prognostic levels, disease subtypes, or biomarker categories. The design makes subgroup-specific decisions, which may be to drop an unacceptably toxic or inefficacious dose, randomize patients among acceptable doses, or identify a best dose in terms of treatment success defined in terms of time to failure over long-term follow-up. A piecewise exponential distribution for failure time is assumed, including subgroup-specific effects of dose, response, and toxicity. Latent variables are used to adaptively cluster subgroups found to have similar dose-outcome distributions, with the model simplified to borrow strength between subgroups in the same cluster. Guidelines and user-friendly computer software for implementing the design are provided. A simulation study is reported that shows the PGen I-II design is superior to similarly structured designs that either assume patient homogeneity or conduct separate trials within subgroups.
期刊介绍:
The International Biometric Society is an international society promoting the development and application of statistical and mathematical theory and methods in the biosciences, including agriculture, biomedical science and public health, ecology, environmental sciences, forestry, and allied disciplines. The Society welcomes as members statisticians, mathematicians, biological scientists, and others devoted to interdisciplinary efforts in advancing the collection and interpretation of information in the biosciences. The Society sponsors the biennial International Biometric Conference, held in sites throughout the world; through its National Groups and Regions, it also Society sponsors regional and local meetings.