生态学和进化中年龄生育率的推论。向其他学科学习,提高技术水平。

IF 1.7 4区 数学 Q3 BIOLOGY
Biometrics Pub Date : 2025-07-03 DOI:10.1093/biomtc/ujaf081
Fernando Colchero
{"title":"生态学和进化中年龄生育率的推论。向其他学科学习,提高技术水平。","authors":"Fernando Colchero","doi":"10.1093/biomtc/ujaf081","DOIUrl":null,"url":null,"abstract":"<p><p>Despite the importance of age-specific fertility for ecology and evolution, the methods for modeling and inference have proven considerably limited. However, other disciplines have long focused on exploring and developing a vast number of models. Here, I provide an overview of the different models proposed since the 1940s by formal demographers, statisticians, and social scientists, most of which are unknown to the ecological and evolutionary communities. I describe how these fall into 2 main categories, namely polynomials and those based on probability density functions. I discuss their merits in terms of their overall behavior and how well they represent the different stages of fertility. Despite many alternative models, inference on age-specific fertility has usually been limited to simple least squares. Although this might be sufficient for human data, I hope to demonstrate that inference requires more sophisticated approaches for ecological and evolutionary datasets. To illustrate how inference and model choice can be achieved on different types of typical ecological and evolutionary data, I present the new R package Bayesian Fertility Trajectory Analysis, which I apply to published aggregated data for lions and baboons. I then conduct a simulation study to test its performance on individual-level data. I show that appropriate inference and model selection can be achieved even when a small number of parents are followed.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"81 3","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inference on age-specific fertility in ecology and evolution. Learning from other disciplines and improving the state of the art.\",\"authors\":\"Fernando Colchero\",\"doi\":\"10.1093/biomtc/ujaf081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Despite the importance of age-specific fertility for ecology and evolution, the methods for modeling and inference have proven considerably limited. However, other disciplines have long focused on exploring and developing a vast number of models. Here, I provide an overview of the different models proposed since the 1940s by formal demographers, statisticians, and social scientists, most of which are unknown to the ecological and evolutionary communities. I describe how these fall into 2 main categories, namely polynomials and those based on probability density functions. I discuss their merits in terms of their overall behavior and how well they represent the different stages of fertility. Despite many alternative models, inference on age-specific fertility has usually been limited to simple least squares. Although this might be sufficient for human data, I hope to demonstrate that inference requires more sophisticated approaches for ecological and evolutionary datasets. To illustrate how inference and model choice can be achieved on different types of typical ecological and evolutionary data, I present the new R package Bayesian Fertility Trajectory Analysis, which I apply to published aggregated data for lions and baboons. I then conduct a simulation study to test its performance on individual-level data. I show that appropriate inference and model selection can be achieved even when a small number of parents are followed.</p>\",\"PeriodicalId\":8930,\"journal\":{\"name\":\"Biometrics\",\"volume\":\"81 3\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biomtc/ujaf081\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujaf081","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

尽管特定年龄的生育能力对生态学和进化具有重要意义,但建模和推理的方法已被证明相当有限。然而,其他学科长期以来一直专注于探索和开发大量的模型。在这里,我概述了自20世纪40年代以来由正式的人口统计学家、统计学家和社会科学家提出的不同模型,其中大多数模型尚不为生态和进化社区所知。我描述了它们如何分为两大类,即多项式和基于概率密度函数的多项式。我从它们的整体行为以及它们如何很好地代表生育力的不同阶段来讨论它们的优点。尽管有许多可供选择的模型,但对特定年龄生育率的推断通常仅限于简单的最小二乘。虽然这对于人类数据来说可能已经足够了,但我希望证明,对于生态和进化数据集,推理需要更复杂的方法。为了说明如何在不同类型的典型生态和进化数据上实现推理和模型选择,我介绍了新的R包贝叶斯生育轨迹分析,我将其应用于已发表的狮子和狒狒的汇总数据。然后,我进行了模拟研究,以测试其在个人层面数据上的性能。我表明,适当的推理和模型选择可以实现,即使少数父母被跟踪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inference on age-specific fertility in ecology and evolution. Learning from other disciplines and improving the state of the art.

Despite the importance of age-specific fertility for ecology and evolution, the methods for modeling and inference have proven considerably limited. However, other disciplines have long focused on exploring and developing a vast number of models. Here, I provide an overview of the different models proposed since the 1940s by formal demographers, statisticians, and social scientists, most of which are unknown to the ecological and evolutionary communities. I describe how these fall into 2 main categories, namely polynomials and those based on probability density functions. I discuss their merits in terms of their overall behavior and how well they represent the different stages of fertility. Despite many alternative models, inference on age-specific fertility has usually been limited to simple least squares. Although this might be sufficient for human data, I hope to demonstrate that inference requires more sophisticated approaches for ecological and evolutionary datasets. To illustrate how inference and model choice can be achieved on different types of typical ecological and evolutionary data, I present the new R package Bayesian Fertility Trajectory Analysis, which I apply to published aggregated data for lions and baboons. I then conduct a simulation study to test its performance on individual-level data. I show that appropriate inference and model selection can be achieved even when a small number of parents are followed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biometrics
Biometrics 生物-生物学
CiteScore
2.70
自引率
5.30%
发文量
178
审稿时长
4-8 weeks
期刊介绍: The International Biometric Society is an international society promoting the development and application of statistical and mathematical theory and methods in the biosciences, including agriculture, biomedical science and public health, ecology, environmental sciences, forestry, and allied disciplines. The Society welcomes as members statisticians, mathematicians, biological scientists, and others devoted to interdisciplinary efforts in advancing the collection and interpretation of information in the biosciences. The Society sponsors the biennial International Biometric Conference, held in sites throughout the world; through its National Groups and Regions, it also Society sponsors regional and local meetings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信