非平稳多元时间序列的频带分析。

IF 1.7 4区 数学 Q3 BIOLOGY
Biometrics Pub Date : 2025-07-03 DOI:10.1093/biomtc/ujaf083
Raanju R Sundararajan, Scott A Bruce
{"title":"非平稳多元时间序列的频带分析。","authors":"Raanju R Sundararajan, Scott A Bruce","doi":"10.1093/biomtc/ujaf083","DOIUrl":null,"url":null,"abstract":"<p><p>Information from frequency bands in biomedical time series provides useful summaries of the observed signal. Many existing methods consider summaries of the time series obtained over a few well-known, pre-defined frequency bands of interest. However, there is a dearth of data-driven methods for identifying frequency bands that optimally summarize frequency-domain information in the time series. A new method to identify partition points in the frequency space of a multivariate locally stationary time series is proposed. These partition points signify changes across frequencies in the time-varying behavior of the signal and provide frequency band summary measures that best preserve nonstationary dynamics of the observed series. An $L_2$-norm based discrepancy measure that finds differences in the time-varying spectral density matrix is constructed, and its asymptotic properties are derived. New nonparametric bootstrap tests are also provided to identify significant frequency partition points and to identify components and cross-components of the spectral matrix exhibiting changes over frequencies. Finite-sample performance of the proposed method is illustrated via simulations. The proposed method is used to develop optimal frequency band summary measures for characterizing time-varying behavior in resting-state electroencephalography time series, as well as identifying components and cross-components associated with each frequency partition point.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"81 3","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12290460/pdf/","citationCount":"0","resultStr":"{\"title\":\"Frequency band analysis of nonstationary multivariate time series.\",\"authors\":\"Raanju R Sundararajan, Scott A Bruce\",\"doi\":\"10.1093/biomtc/ujaf083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Information from frequency bands in biomedical time series provides useful summaries of the observed signal. Many existing methods consider summaries of the time series obtained over a few well-known, pre-defined frequency bands of interest. However, there is a dearth of data-driven methods for identifying frequency bands that optimally summarize frequency-domain information in the time series. A new method to identify partition points in the frequency space of a multivariate locally stationary time series is proposed. These partition points signify changes across frequencies in the time-varying behavior of the signal and provide frequency band summary measures that best preserve nonstationary dynamics of the observed series. An $L_2$-norm based discrepancy measure that finds differences in the time-varying spectral density matrix is constructed, and its asymptotic properties are derived. New nonparametric bootstrap tests are also provided to identify significant frequency partition points and to identify components and cross-components of the spectral matrix exhibiting changes over frequencies. Finite-sample performance of the proposed method is illustrated via simulations. The proposed method is used to develop optimal frequency band summary measures for characterizing time-varying behavior in resting-state electroencephalography time series, as well as identifying components and cross-components associated with each frequency partition point.</p>\",\"PeriodicalId\":8930,\"journal\":{\"name\":\"Biometrics\",\"volume\":\"81 3\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12290460/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biomtc/ujaf083\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujaf083","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

生物医学时间序列中的频带信息提供了观测信号的有用摘要。许多现有的方法考虑在几个众所周知的、预先定义的感兴趣的频带上获得的时间序列的摘要。然而,缺乏数据驱动的方法来识别最佳地总结时间序列中的频域信息的频带。提出了一种识别多变量局部平稳时间序列频率空间中分割点的新方法。这些划分点表示信号时变行为中不同频率的变化,并提供最好地保持观测序列的非平稳动态的频带汇总测量。构造了一个基于L_2 -范数的时变谱密度矩阵差值测度,并推导了其渐近性质。还提供了新的非参数自举测试来识别重要的频率划分点,并识别频谱矩阵中显示随频率变化的分量和交叉分量。通过仿真验证了该方法的有限样本性能。该方法用于开发最佳频带汇总度量,以表征静息状态脑电图时间序列中的时变行为,以及识别与每个频率划分点相关的分量和交叉分量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Frequency band analysis of nonstationary multivariate time series.

Information from frequency bands in biomedical time series provides useful summaries of the observed signal. Many existing methods consider summaries of the time series obtained over a few well-known, pre-defined frequency bands of interest. However, there is a dearth of data-driven methods for identifying frequency bands that optimally summarize frequency-domain information in the time series. A new method to identify partition points in the frequency space of a multivariate locally stationary time series is proposed. These partition points signify changes across frequencies in the time-varying behavior of the signal and provide frequency band summary measures that best preserve nonstationary dynamics of the observed series. An $L_2$-norm based discrepancy measure that finds differences in the time-varying spectral density matrix is constructed, and its asymptotic properties are derived. New nonparametric bootstrap tests are also provided to identify significant frequency partition points and to identify components and cross-components of the spectral matrix exhibiting changes over frequencies. Finite-sample performance of the proposed method is illustrated via simulations. The proposed method is used to develop optimal frequency band summary measures for characterizing time-varying behavior in resting-state electroencephalography time series, as well as identifying components and cross-components associated with each frequency partition point.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biometrics
Biometrics 生物-生物学
CiteScore
2.70
自引率
5.30%
发文量
178
审稿时长
4-8 weeks
期刊介绍: The International Biometric Society is an international society promoting the development and application of statistical and mathematical theory and methods in the biosciences, including agriculture, biomedical science and public health, ecology, environmental sciences, forestry, and allied disciplines. The Society welcomes as members statisticians, mathematicians, biological scientists, and others devoted to interdisciplinary efforts in advancing the collection and interpretation of information in the biosciences. The Society sponsors the biennial International Biometric Conference, held in sites throughout the world; through its National Groups and Regions, it also Society sponsors regional and local meetings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信