一种用于地外探索的蜘蛛式优化软驱动器。

IF 3.9 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY
Jonah Mack, Maks Gepner, Francesco Giorgio-Serchi, Adam A Stokes
{"title":"一种用于地外探索的蜘蛛式优化软驱动器。","authors":"Jonah Mack, Maks Gepner, Francesco Giorgio-Serchi, Adam A Stokes","doi":"10.3390/biomimetics10070455","DOIUrl":null,"url":null,"abstract":"<p><p>Extraterrestrial exploration presents unique challenges for robotic systems, as traditional rigid rovers face limitations in stowage volume, traction on unpredictable terrain, and susceptibility to damage. Soft robotics offers promising solutions through bio-inspired designs that can mimic natural locomotion mechanisms. Here, we present an optimised, spider-inspired soft jumping robot for extraterrestrial exploration that addresses key challenges in soft robotics: actuation efficiency, controllability, and deployment. Drawing inspiration from spider physiology-particularly their hydraulic extension mechanism-we develop a lightweight limb capable of multi-modal behaviour with significantly reduced energy requirements. Our 3D-printed soft actuator leverages pressure-driven collapse for efficient retraction and pressure-enhanced rapid extension, achieving a power-to-weight ratio of 249 W/kg. The integration of a non-backdriveable clutch mechanism enables the system to hold positions with zero energy expenditure-a critical feature for space applications. Experimental characterisation and a subsequent optimisation methodology across various materials, dimensions, and pressures reveal that the robot can achieve jumping heights of up to 1.86 times its body length. The collapsible nature of the soft limb enables efficient stowage during spacecraft transit, while the integrated pumping system facilitates self-deployment upon arrival. This work demonstrates how biologically inspired design principles can be effectively applied to develop versatile robotic systems optimised for the unique constraints of extraterrestrial exploration.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 7","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Optimised Spider-Inspired Soft Actuator for Extraterrestrial Exploration.\",\"authors\":\"Jonah Mack, Maks Gepner, Francesco Giorgio-Serchi, Adam A Stokes\",\"doi\":\"10.3390/biomimetics10070455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Extraterrestrial exploration presents unique challenges for robotic systems, as traditional rigid rovers face limitations in stowage volume, traction on unpredictable terrain, and susceptibility to damage. Soft robotics offers promising solutions through bio-inspired designs that can mimic natural locomotion mechanisms. Here, we present an optimised, spider-inspired soft jumping robot for extraterrestrial exploration that addresses key challenges in soft robotics: actuation efficiency, controllability, and deployment. Drawing inspiration from spider physiology-particularly their hydraulic extension mechanism-we develop a lightweight limb capable of multi-modal behaviour with significantly reduced energy requirements. Our 3D-printed soft actuator leverages pressure-driven collapse for efficient retraction and pressure-enhanced rapid extension, achieving a power-to-weight ratio of 249 W/kg. The integration of a non-backdriveable clutch mechanism enables the system to hold positions with zero energy expenditure-a critical feature for space applications. Experimental characterisation and a subsequent optimisation methodology across various materials, dimensions, and pressures reveal that the robot can achieve jumping heights of up to 1.86 times its body length. The collapsible nature of the soft limb enables efficient stowage during spacecraft transit, while the integrated pumping system facilitates self-deployment upon arrival. This work demonstrates how biologically inspired design principles can be effectively applied to develop versatile robotic systems optimised for the unique constraints of extraterrestrial exploration.</p>\",\"PeriodicalId\":8907,\"journal\":{\"name\":\"Biomimetics\",\"volume\":\"10 7\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomimetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/biomimetics10070455\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10070455","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

地外探索对机器人系统提出了独特的挑战,因为传统的刚性漫游者面临着装载体积的限制,在不可预测的地形上的牵引力,以及对损坏的敏感性。软机器人通过仿生设计提供了有前途的解决方案,可以模仿自然运动机制。在这里,我们提出了一个优化的,蜘蛛启发的地外探索软跳跃机器人,解决了软机器人技术的关键挑战:驱动效率,可控制性和部署。从蜘蛛的生理——特别是它们的液压伸展机制——中获得灵感,我们开发了一种能够多模式行为的轻型肢体,大大减少了能量需求。我们的3d打印软致动器利用压力驱动的收缩来实现有效的收缩和压力增强的快速拉伸,实现249 W/kg的功率重量比。非反驱动离合器机构的集成使系统能够以零能量消耗保持位置-这是空间应用的关键特性。实验表征和随后的各种材料、尺寸和压力的优化方法表明,机器人可以达到高达其体长1.86倍的跳跃高度。软肢的可折叠特性使航天器在运输过程中能够有效地装载,而集成的泵送系统便于在到达时自行部署。这项工作展示了如何将生物学启发的设计原则有效地应用于开发针对外星探索的独特限制进行优化的多功能机器人系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Optimised Spider-Inspired Soft Actuator for Extraterrestrial Exploration.

Extraterrestrial exploration presents unique challenges for robotic systems, as traditional rigid rovers face limitations in stowage volume, traction on unpredictable terrain, and susceptibility to damage. Soft robotics offers promising solutions through bio-inspired designs that can mimic natural locomotion mechanisms. Here, we present an optimised, spider-inspired soft jumping robot for extraterrestrial exploration that addresses key challenges in soft robotics: actuation efficiency, controllability, and deployment. Drawing inspiration from spider physiology-particularly their hydraulic extension mechanism-we develop a lightweight limb capable of multi-modal behaviour with significantly reduced energy requirements. Our 3D-printed soft actuator leverages pressure-driven collapse for efficient retraction and pressure-enhanced rapid extension, achieving a power-to-weight ratio of 249 W/kg. The integration of a non-backdriveable clutch mechanism enables the system to hold positions with zero energy expenditure-a critical feature for space applications. Experimental characterisation and a subsequent optimisation methodology across various materials, dimensions, and pressures reveal that the robot can achieve jumping heights of up to 1.86 times its body length. The collapsible nature of the soft limb enables efficient stowage during spacecraft transit, while the integrated pumping system facilitates self-deployment upon arrival. This work demonstrates how biologically inspired design principles can be effectively applied to develop versatile robotic systems optimised for the unique constraints of extraterrestrial exploration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信