结合动态流体流动的肝脏芯片平台的最新进展和未来展望。

IF 3.9 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY
Jingyeong Yun, Tae-Joon Jeon, Sun Min Kim
{"title":"结合动态流体流动的肝脏芯片平台的最新进展和未来展望。","authors":"Jingyeong Yun, Tae-Joon Jeon, Sun Min Kim","doi":"10.3390/biomimetics10070443","DOIUrl":null,"url":null,"abstract":"<p><p>The liver is a vital organ responsible for a broad range of metabolic functions, including glucose and lipid metabolism, detoxification, and protein synthesis. Its structural complexity, characterized by hexagonal hepatic lobules composed of diverse parenchymal and non-parenchymal cell types, supports its broad spectrum of physiological activities. Traditional in vitro liver models have contributed significantly to our understanding of hepatic biology and the development of therapies for liver-related diseases. However, static culture systems fail to replicate the dynamic in vivo microenvironment, particularly the continuous blood flow and shear stress that are critical for maintaining hepatocyte function and metabolic zonation. Recent advances in microphysiological systems (MPS) incorporating dynamic fluid flow have addressed these limitations by providing more physiologically relevant platforms for modeling liver function. These systems offer improved fidelity for applications in drug screening, toxicity testing, and disease modeling. Furthermore, the integration of liver MPS with other organ models in multi-organ-on-chip platforms has enabled the investigation of inter-organ crosstalk, enhancing the translational potential of in vitro systems. This review summarizes recent progress in the development of dynamic liver MPS, highlights their biomedical applications, and discusses future directions for creating more comprehensive and predictive in vitro models.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 7","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12293049/pdf/","citationCount":"0","resultStr":"{\"title\":\"Current Advances and Future Perspectives of Liver-on-a-Chip Platforms Incorporating Dynamic Fluid Flow.\",\"authors\":\"Jingyeong Yun, Tae-Joon Jeon, Sun Min Kim\",\"doi\":\"10.3390/biomimetics10070443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The liver is a vital organ responsible for a broad range of metabolic functions, including glucose and lipid metabolism, detoxification, and protein synthesis. Its structural complexity, characterized by hexagonal hepatic lobules composed of diverse parenchymal and non-parenchymal cell types, supports its broad spectrum of physiological activities. Traditional in vitro liver models have contributed significantly to our understanding of hepatic biology and the development of therapies for liver-related diseases. However, static culture systems fail to replicate the dynamic in vivo microenvironment, particularly the continuous blood flow and shear stress that are critical for maintaining hepatocyte function and metabolic zonation. Recent advances in microphysiological systems (MPS) incorporating dynamic fluid flow have addressed these limitations by providing more physiologically relevant platforms for modeling liver function. These systems offer improved fidelity for applications in drug screening, toxicity testing, and disease modeling. Furthermore, the integration of liver MPS with other organ models in multi-organ-on-chip platforms has enabled the investigation of inter-organ crosstalk, enhancing the translational potential of in vitro systems. This review summarizes recent progress in the development of dynamic liver MPS, highlights their biomedical applications, and discusses future directions for creating more comprehensive and predictive in vitro models.</p>\",\"PeriodicalId\":8907,\"journal\":{\"name\":\"Biomimetics\",\"volume\":\"10 7\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12293049/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomimetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/biomimetics10070443\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10070443","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

肝脏是一个重要的器官,负责广泛的代谢功能,包括葡萄糖和脂质代谢,解毒和蛋白质合成。其结构复杂,以六边形肝小叶为特征,由多种实质和非实质细胞类型组成,支持其广泛的生理活动。传统的体外肝脏模型对我们对肝脏生物学的理解和肝脏相关疾病治疗的发展做出了重大贡献。然而,静态培养系统无法复制动态的体内微环境,特别是持续的血流和剪切应力,这对维持肝细胞功能和代谢分区至关重要。结合动态流体流动的微生理系统(MPS)的最新进展通过为肝脏功能建模提供更多生理学相关的平台,解决了这些限制。这些系统为药物筛选、毒性测试和疾病建模的应用提供了更高的保真度。此外,肝脏MPS与其他器官模型在多器官芯片平台上的整合使得器官间串扰的研究成为可能,增强了体外系统的转化潜力。本文综述了动态肝脏MPS的最新进展,重点介绍了其在生物医学上的应用,并讨论了建立更全面和可预测的体外模型的未来方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Current Advances and Future Perspectives of Liver-on-a-Chip Platforms Incorporating Dynamic Fluid Flow.

The liver is a vital organ responsible for a broad range of metabolic functions, including glucose and lipid metabolism, detoxification, and protein synthesis. Its structural complexity, characterized by hexagonal hepatic lobules composed of diverse parenchymal and non-parenchymal cell types, supports its broad spectrum of physiological activities. Traditional in vitro liver models have contributed significantly to our understanding of hepatic biology and the development of therapies for liver-related diseases. However, static culture systems fail to replicate the dynamic in vivo microenvironment, particularly the continuous blood flow and shear stress that are critical for maintaining hepatocyte function and metabolic zonation. Recent advances in microphysiological systems (MPS) incorporating dynamic fluid flow have addressed these limitations by providing more physiologically relevant platforms for modeling liver function. These systems offer improved fidelity for applications in drug screening, toxicity testing, and disease modeling. Furthermore, the integration of liver MPS with other organ models in multi-organ-on-chip platforms has enabled the investigation of inter-organ crosstalk, enhancing the translational potential of in vitro systems. This review summarizes recent progress in the development of dynamic liver MPS, highlights their biomedical applications, and discusses future directions for creating more comprehensive and predictive in vitro models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信