Si Su, Tengarile A, Ruhan A, Riga Wu, Lisi Wei, La Ta, Wenfeng Huo, Lijun Tong, Jing Zhang, Rilebagen Hu, Li Li
{"title":"通过网络药理学揭示肠道微生物衍生代谢物对抑郁症的影响。","authors":"Si Su, Tengarile A, Ruhan A, Riga Wu, Lisi Wei, La Ta, Wenfeng Huo, Lijun Tong, Jing Zhang, Rilebagen Hu, Li Li","doi":"10.1080/21691401.2025.2531752","DOIUrl":null,"url":null,"abstract":"<p><p>A total of 208 metabolites and 223 targets were initially extracted from the gutMGene v1.0 database. In addition, 1,630 and 1,321 targets were identified using the Similarity Ensemble Approach and Swiss Target Prediction databases, respectively, resulting in 921 overlapping targets. By integrating data from gutMGenev1.0, 13 core targets were finally identified. A microbiota-metabolite-target-signal pathway-disease network was constructed using Cytoscape 3.9.1, revealing 15 metabolites associated with the IL-17, TLR, and PI3K-Akt signalling pathways. Among these, five metabolites exhibited favourable drug similarity and acceptable toxicological profiles. Molecular docking confirmed the stable binding of two key metabolites-succinate and phenylacetylglutamine-to their respective targets. The results showed that succinate and phenylacetylglutamine demonstrated strong binding affinities to IL-1β and GSK3B, both involved in the IL-17, TLR, and PI3K-Akt signalling pathways. IL-17 and TLR4, as important pro-inflammatory cytokines, are closely associated with the development of depression, while the PI3K/AKT signalling pathway plays a key role in its pathogenesis. The present study reveals the potential mechanisms by which gut microbiota influence MDD and provides a scientific basis and a comprehensive research framework for future investigations.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"53 1","pages":"327-342"},"PeriodicalIF":4.5000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revealing the impact of gut microbiota-derived metabolites on depression through network pharmacology.\",\"authors\":\"Si Su, Tengarile A, Ruhan A, Riga Wu, Lisi Wei, La Ta, Wenfeng Huo, Lijun Tong, Jing Zhang, Rilebagen Hu, Li Li\",\"doi\":\"10.1080/21691401.2025.2531752\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A total of 208 metabolites and 223 targets were initially extracted from the gutMGene v1.0 database. In addition, 1,630 and 1,321 targets were identified using the Similarity Ensemble Approach and Swiss Target Prediction databases, respectively, resulting in 921 overlapping targets. By integrating data from gutMGenev1.0, 13 core targets were finally identified. A microbiota-metabolite-target-signal pathway-disease network was constructed using Cytoscape 3.9.1, revealing 15 metabolites associated with the IL-17, TLR, and PI3K-Akt signalling pathways. Among these, five metabolites exhibited favourable drug similarity and acceptable toxicological profiles. Molecular docking confirmed the stable binding of two key metabolites-succinate and phenylacetylglutamine-to their respective targets. The results showed that succinate and phenylacetylglutamine demonstrated strong binding affinities to IL-1β and GSK3B, both involved in the IL-17, TLR, and PI3K-Akt signalling pathways. IL-17 and TLR4, as important pro-inflammatory cytokines, are closely associated with the development of depression, while the PI3K/AKT signalling pathway plays a key role in its pathogenesis. The present study reveals the potential mechanisms by which gut microbiota influence MDD and provides a scientific basis and a comprehensive research framework for future investigations.</p>\",\"PeriodicalId\":8736,\"journal\":{\"name\":\"Artificial Cells, Nanomedicine, and Biotechnology\",\"volume\":\"53 1\",\"pages\":\"327-342\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Cells, Nanomedicine, and Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/21691401.2025.2531752\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Cells, Nanomedicine, and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/21691401.2025.2531752","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Revealing the impact of gut microbiota-derived metabolites on depression through network pharmacology.
A total of 208 metabolites and 223 targets were initially extracted from the gutMGene v1.0 database. In addition, 1,630 and 1,321 targets were identified using the Similarity Ensemble Approach and Swiss Target Prediction databases, respectively, resulting in 921 overlapping targets. By integrating data from gutMGenev1.0, 13 core targets were finally identified. A microbiota-metabolite-target-signal pathway-disease network was constructed using Cytoscape 3.9.1, revealing 15 metabolites associated with the IL-17, TLR, and PI3K-Akt signalling pathways. Among these, five metabolites exhibited favourable drug similarity and acceptable toxicological profiles. Molecular docking confirmed the stable binding of two key metabolites-succinate and phenylacetylglutamine-to their respective targets. The results showed that succinate and phenylacetylglutamine demonstrated strong binding affinities to IL-1β and GSK3B, both involved in the IL-17, TLR, and PI3K-Akt signalling pathways. IL-17 and TLR4, as important pro-inflammatory cytokines, are closely associated with the development of depression, while the PI3K/AKT signalling pathway plays a key role in its pathogenesis. The present study reveals the potential mechanisms by which gut microbiota influence MDD and provides a scientific basis and a comprehensive research framework for future investigations.
期刊介绍:
Artificial Cells, Nanomedicine and Biotechnology covers the frontiers of interdisciplinary research and application, combining artificial cells, nanotechnology, nanobiotechnology, biotechnology, molecular biology, bioencapsulation, novel carriers, stem cells and tissue engineering. Emphasis is on basic research, applied research, and clinical and industrial applications of the following topics:artificial cellsblood substitutes and oxygen therapeuticsnanotechnology, nanobiotecnology, nanomedicinetissue engineeringstem cellsbioencapsulationmicroencapsulation and nanoencapsulationmicroparticles and nanoparticlesliposomescell therapy and gene therapyenzyme therapydrug delivery systemsbiodegradable and biocompatible polymers for scaffolds and carriersbiosensorsimmobilized enzymes and their usesother biotechnological and nanobiotechnological approachesRapid progress in modern research cannot be carried out in isolation and is based on the combined use of the different novel approaches. The interdisciplinary research involving novel approaches, as discussed above, has revolutionized this field resulting in rapid developments. This journal serves to bring these different, modern and futuristic approaches together for the academic, clinical and industrial communities to allow for even greater developments of this highly interdisciplinary area.