Shane M Drake, Daniel J Pendleton, Caleb D Potter, James E Patterson
{"title":"用拉曼光谱研究了端羟基聚丁二烯(HTPB)与异弗尔酮二异氰酸酯(IPDI)的固化机理。","authors":"Shane M Drake, Daniel J Pendleton, Caleb D Potter, James E Patterson","doi":"10.1177/00037028251365951","DOIUrl":null,"url":null,"abstract":"<p><p>Hydroxyl-terminated polybutadiene (HTPB) is used in a variety of formulations, particularly for military and aerospace applications as a binder for energetic materials. This work investigates details of its curing process when formulated with isophorone diisocyanate (IPDI). Raman spectroscopy was used as a fast, sensitive, non-destructive technique to monitor the curing process of HTPB-IPDI. A significant feature at 777 cm<sup>-1</sup> was shown to grow over the course of the curing process. Ab initio calculations of the normal modes of the HTPB-IPDI dimer indicate that this feature is most likely connected to the urethane bond, which suggests that the feature at 777 cm<sup>-1</sup> is associated with formation of the urethane linkage as the formulation cures. Raman spectroscopy thus has potential to be used for quality assurance and other material state awareness measurements for HTPB-IPDI materials.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"1409-1417"},"PeriodicalIF":2.2000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Curing Mechanism of Hydroxyl-Terminated Polybutadiene (HTPB) Formulated with Isophorone Diisocyanate (IPDI) as Revealed Using Raman Spectroscopy.\",\"authors\":\"Shane M Drake, Daniel J Pendleton, Caleb D Potter, James E Patterson\",\"doi\":\"10.1177/00037028251365951\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hydroxyl-terminated polybutadiene (HTPB) is used in a variety of formulations, particularly for military and aerospace applications as a binder for energetic materials. This work investigates details of its curing process when formulated with isophorone diisocyanate (IPDI). Raman spectroscopy was used as a fast, sensitive, non-destructive technique to monitor the curing process of HTPB-IPDI. A significant feature at 777 cm<sup>-1</sup> was shown to grow over the course of the curing process. Ab initio calculations of the normal modes of the HTPB-IPDI dimer indicate that this feature is most likely connected to the urethane bond, which suggests that the feature at 777 cm<sup>-1</sup> is associated with formation of the urethane linkage as the formulation cures. Raman spectroscopy thus has potential to be used for quality assurance and other material state awareness measurements for HTPB-IPDI materials.</p>\",\"PeriodicalId\":8253,\"journal\":{\"name\":\"Applied Spectroscopy\",\"volume\":\" \",\"pages\":\"1409-1417\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1177/00037028251365951\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/00037028251365951","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/25 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Curing Mechanism of Hydroxyl-Terminated Polybutadiene (HTPB) Formulated with Isophorone Diisocyanate (IPDI) as Revealed Using Raman Spectroscopy.
Hydroxyl-terminated polybutadiene (HTPB) is used in a variety of formulations, particularly for military and aerospace applications as a binder for energetic materials. This work investigates details of its curing process when formulated with isophorone diisocyanate (IPDI). Raman spectroscopy was used as a fast, sensitive, non-destructive technique to monitor the curing process of HTPB-IPDI. A significant feature at 777 cm-1 was shown to grow over the course of the curing process. Ab initio calculations of the normal modes of the HTPB-IPDI dimer indicate that this feature is most likely connected to the urethane bond, which suggests that the feature at 777 cm-1 is associated with formation of the urethane linkage as the formulation cures. Raman spectroscopy thus has potential to be used for quality assurance and other material state awareness measurements for HTPB-IPDI materials.
期刊介绍:
Applied Spectroscopy is one of the world''s leading spectroscopy journals, publishing high-quality peer-reviewed articles, both fundamental and applied, covering all aspects of spectroscopy. Established in 1951, the journal is owned by the Society for Applied Spectroscopy and is published monthly. The journal is dedicated to fulfilling the mission of the Society to “…advance and disseminate knowledge and information concerning the art and science of spectroscopy and other allied sciences.”