人工智能辅助尿细胞学无创检测肌肉侵袭性尿路上皮癌:一项前瞻性多中心诊断研究。

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Runnan Shen, Fan Jiang, Xiaowei Huang, Guibin Hong, Yun Luo, Huan Wan, Ye Xie, Mengyi Zhu, Yun Wang, Bohao Liu, Ping Qin, Yahui Wang, Haoxuan Wang, Hongkun Yang, Zhen Lin, Rui Chen, Nengtai Ouyang, Jian Huang, Tianxin Lin, Shaoxu Wu
{"title":"人工智能辅助尿细胞学无创检测肌肉侵袭性尿路上皮癌:一项前瞻性多中心诊断研究。","authors":"Runnan Shen, Fan Jiang, Xiaowei Huang, Guibin Hong, Yun Luo, Huan Wan, Ye Xie, Mengyi Zhu, Yun Wang, Bohao Liu, Ping Qin, Yahui Wang, Haoxuan Wang, Hongkun Yang, Zhen Lin, Rui Chen, Nengtai Ouyang, Jian Huang, Tianxin Lin, Shaoxu Wu","doi":"10.1002/advs.202508977","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate preoperative diagnosis of muscle invasion (MI) is critical for urothelial carcinoma (UC) management. The aim is to evaluate whether artificial intelligence (AI) model based on urine cytology can accurately detect MIUC and compare its performance with radiologist assessments. UC patients underwent liquid-based urine cytology from four centers are included for model development/validation. Performance of the precision urine cytology AI solution for MI (PUCAS-M) is validated across multicenter cohorts and compared to radiologists' assessments (including CT/MR, MR accounted for 40.7%). Clinical utility is assessed for initial diagnosis, recurrence detection, and neoadjuvant therapy. PUCAS-M achieves an area under the receiver operation curve (AUROC) of 0.857 (95% CI: 0.820-0.895) in the whole validation cohort, which is significantly higher (P-value = 0.005) than radiologists (0.773, 95% CI: 0.727-0.818). The integration of radiologists' diagnosis and PUCAS-M (mPUCAS-M) significantly increases the sensitivity of radiologists from 63.9% to 83.3% in bladder cancer and from 76.9% to 90.3% in upper-tract UC. Lastly, in the neoadjuvant therapy subgroups, mPUCAS-M maintains an improved AUROC (ranging from 0.857-0.865), whereas radiologist assessments' performance decline. PUCAS-M provides accurate, non-invasive MI detection method, particularly valuable for equivocal imaging. Integration with clinical data enhances diagnostic precision, offering a scalable solution for UC management.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e08977"},"PeriodicalIF":14.3000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial Intelligence-Assisted Urine Cytology for Noninvasive Detection of Muscle-Invasive Urothelial Carcinoma: A Multi-Center Diagnostic Study with Prospective Validation.\",\"authors\":\"Runnan Shen, Fan Jiang, Xiaowei Huang, Guibin Hong, Yun Luo, Huan Wan, Ye Xie, Mengyi Zhu, Yun Wang, Bohao Liu, Ping Qin, Yahui Wang, Haoxuan Wang, Hongkun Yang, Zhen Lin, Rui Chen, Nengtai Ouyang, Jian Huang, Tianxin Lin, Shaoxu Wu\",\"doi\":\"10.1002/advs.202508977\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accurate preoperative diagnosis of muscle invasion (MI) is critical for urothelial carcinoma (UC) management. The aim is to evaluate whether artificial intelligence (AI) model based on urine cytology can accurately detect MIUC and compare its performance with radiologist assessments. UC patients underwent liquid-based urine cytology from four centers are included for model development/validation. Performance of the precision urine cytology AI solution for MI (PUCAS-M) is validated across multicenter cohorts and compared to radiologists' assessments (including CT/MR, MR accounted for 40.7%). Clinical utility is assessed for initial diagnosis, recurrence detection, and neoadjuvant therapy. PUCAS-M achieves an area under the receiver operation curve (AUROC) of 0.857 (95% CI: 0.820-0.895) in the whole validation cohort, which is significantly higher (P-value = 0.005) than radiologists (0.773, 95% CI: 0.727-0.818). The integration of radiologists' diagnosis and PUCAS-M (mPUCAS-M) significantly increases the sensitivity of radiologists from 63.9% to 83.3% in bladder cancer and from 76.9% to 90.3% in upper-tract UC. Lastly, in the neoadjuvant therapy subgroups, mPUCAS-M maintains an improved AUROC (ranging from 0.857-0.865), whereas radiologist assessments' performance decline. PUCAS-M provides accurate, non-invasive MI detection method, particularly valuable for equivocal imaging. Integration with clinical data enhances diagnostic precision, offering a scalable solution for UC management.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\" \",\"pages\":\"e08977\"},\"PeriodicalIF\":14.3000,\"publicationDate\":\"2025-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/advs.202508977\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202508977","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

准确的术前诊断肌肉侵犯(MI)是至关重要的尿路上皮癌(UC)的治疗。目的是评估基于尿液细胞学的人工智能(AI)模型是否可以准确检测MIUC,并将其性能与放射科医生的评估进行比较。UC患者接受了来自四个中心的液体尿液细胞学检查,用于模型开发/验证。在多中心队列中验证了MI精确尿液细胞学AI解决方案(PUCAS-M)的性能,并与放射科医生的评估(包括CT/MR, MR占40.7%)进行了比较。临床效用评估为初始诊断,复发检测和新辅助治疗。在整个验证队列中,PUCAS-M的受试者操作曲线下面积(AUROC)为0.857 (95% CI: 0.820-0.895),显著高于放射科医师(0.773,95% CI: 0.727-0.818) (p值= 0.005)。将放射科医师的诊断与PUCAS-M (mPUCAS-M)整合后,放射科医师对膀胱癌的敏感性从63.9%提高到83.3%,对上尿路UC的敏感性从76.9%提高到90.3%。最后,在新辅助治疗亚组中,mPUCAS-M保持了改善的AUROC(范围从0.857-0.865),而放射科医生评估的表现下降。PUCAS-M提供了准确、无创的心肌梗死检测方法,对模棱两可的影像尤其有价值。与临床数据的集成提高了诊断精度,为UC管理提供了可扩展的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Artificial Intelligence-Assisted Urine Cytology for Noninvasive Detection of Muscle-Invasive Urothelial Carcinoma: A Multi-Center Diagnostic Study with Prospective Validation.

Accurate preoperative diagnosis of muscle invasion (MI) is critical for urothelial carcinoma (UC) management. The aim is to evaluate whether artificial intelligence (AI) model based on urine cytology can accurately detect MIUC and compare its performance with radiologist assessments. UC patients underwent liquid-based urine cytology from four centers are included for model development/validation. Performance of the precision urine cytology AI solution for MI (PUCAS-M) is validated across multicenter cohorts and compared to radiologists' assessments (including CT/MR, MR accounted for 40.7%). Clinical utility is assessed for initial diagnosis, recurrence detection, and neoadjuvant therapy. PUCAS-M achieves an area under the receiver operation curve (AUROC) of 0.857 (95% CI: 0.820-0.895) in the whole validation cohort, which is significantly higher (P-value = 0.005) than radiologists (0.773, 95% CI: 0.727-0.818). The integration of radiologists' diagnosis and PUCAS-M (mPUCAS-M) significantly increases the sensitivity of radiologists from 63.9% to 83.3% in bladder cancer and from 76.9% to 90.3% in upper-tract UC. Lastly, in the neoadjuvant therapy subgroups, mPUCAS-M maintains an improved AUROC (ranging from 0.857-0.865), whereas radiologist assessments' performance decline. PUCAS-M provides accurate, non-invasive MI detection method, particularly valuable for equivocal imaging. Integration with clinical data enhances diagnostic precision, offering a scalable solution for UC management.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信