钙钛矿量子点超低能耗共轭聚合物的极性调整光突触晶体管。

IF 12.2 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Wei-Cheng Chen, Ya-Shuan Wu, Yan-Cheng Lin, Yu-Hang Huang, Jing-Yang Wu, Kai-Wei Lin, Cheng-Liang Liu, Chi-Ching Kuo, Wen-Chang Chen
{"title":"钙钛矿量子点超低能耗共轭聚合物的极性调整光突触晶体管。","authors":"Wei-Cheng Chen, Ya-Shuan Wu, Yan-Cheng Lin, Yu-Hang Huang, Jing-Yang Wu, Kai-Wei Lin, Cheng-Liang Liu, Chi-Ching Kuo, Wen-Chang Chen","doi":"10.1039/d5mh00833f","DOIUrl":null,"url":null,"abstract":"<p><p>Heterojunction-based photosynaptic transistors have gained significant attention in neuromorphic electronics due to their ease of integration and optical communication capabilities. However, achieving efficient photogenerated carrier transfer within heterojunctions remains a critical challenge in devices utilizing organic and photosensitive materials. This study demonstrates that tuning the bipolarity of perovskite quantum dots (PeQDs) through Sn doping effectively modulates electron and hole trapping properties in conjugated polymer (CP)-PeQD nanocomposites, paving the way for energy-efficient neuromorphic electronics. Optimal Sn doping enhanced PeQDs' photoluminescence quantum yield and adjusted energy levels, promoting efficient electron trapping in p-type devices while reducing hole trapping in n-type systems. Integrating Sn-PeQDs with p-type CPs (diketopyrrolopyrrole-selenophene) enabled exceptional photosynaptic behaviors, such as short-term and long-term plasticity and spike-dependent plasticity. Remarkably, p-type CPs/Sn-PeQDs with optimal Sn doping achieved ultralow energy consumption of 0.169 aJ at a drain voltage of -0.1 mV with a 1 ms light pulse, significantly outperforming earlier p-type optoelectronic synapse designs. This work underscores the potential of Sn-PeQDs as a robust strategy for designing efficient, low-energy neuromorphic systems for next-generation electronics.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultralow energy consumption conjugated polymers with perovskite quantum dots <i>via</i> polarity adjustment for photosynaptic transistors.\",\"authors\":\"Wei-Cheng Chen, Ya-Shuan Wu, Yan-Cheng Lin, Yu-Hang Huang, Jing-Yang Wu, Kai-Wei Lin, Cheng-Liang Liu, Chi-Ching Kuo, Wen-Chang Chen\",\"doi\":\"10.1039/d5mh00833f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Heterojunction-based photosynaptic transistors have gained significant attention in neuromorphic electronics due to their ease of integration and optical communication capabilities. However, achieving efficient photogenerated carrier transfer within heterojunctions remains a critical challenge in devices utilizing organic and photosensitive materials. This study demonstrates that tuning the bipolarity of perovskite quantum dots (PeQDs) through Sn doping effectively modulates electron and hole trapping properties in conjugated polymer (CP)-PeQD nanocomposites, paving the way for energy-efficient neuromorphic electronics. Optimal Sn doping enhanced PeQDs' photoluminescence quantum yield and adjusted energy levels, promoting efficient electron trapping in p-type devices while reducing hole trapping in n-type systems. Integrating Sn-PeQDs with p-type CPs (diketopyrrolopyrrole-selenophene) enabled exceptional photosynaptic behaviors, such as short-term and long-term plasticity and spike-dependent plasticity. Remarkably, p-type CPs/Sn-PeQDs with optimal Sn doping achieved ultralow energy consumption of 0.169 aJ at a drain voltage of -0.1 mV with a 1 ms light pulse, significantly outperforming earlier p-type optoelectronic synapse designs. This work underscores the potential of Sn-PeQDs as a robust strategy for designing efficient, low-energy neuromorphic systems for next-generation electronics.</p>\",\"PeriodicalId\":87,\"journal\":{\"name\":\"Materials Horizons\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2025-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d5mh00833f\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5mh00833f","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

基于异质结的光突触晶体管由于其易于集成和光通信能力而在神经形态电子学中受到了极大的关注。然而,在利用有机和光敏材料的设备中,在异质结内实现有效的光生载流子转移仍然是一个关键的挑战。该研究表明,通过锡掺杂调整钙钛矿量子点(PeQDs)的双极性,可以有效地调节共轭聚合物(CP)-PeQD纳米复合材料中的电子和空穴捕获特性,为节能神经形态电子学铺平了道路。优化后的锡掺杂提高了PeQDs的光致发光量子产率并调节了能级,促进了p型器件中有效的电子捕获,同时减少了n型系统中的空穴捕获。将Sn-PeQDs与p型CPs(双酮吡咯-吡咯-硒烯)结合,可以实现特殊的光突触行为,如短期和长期可塑性以及峰依赖性可塑性。值得注意的是,采用最佳锡掺杂的p型CPs/Sn- peqds在漏极电压为-0.1 mV、光脉冲为1 ms时实现了0.169 aJ的超低能耗,显著优于早期的p型光电突触设计。这项工作强调了sn - peqd作为设计下一代电子产品高效、低能量神经形态系统的强大策略的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ultralow energy consumption conjugated polymers with perovskite quantum dots via polarity adjustment for photosynaptic transistors.

Heterojunction-based photosynaptic transistors have gained significant attention in neuromorphic electronics due to their ease of integration and optical communication capabilities. However, achieving efficient photogenerated carrier transfer within heterojunctions remains a critical challenge in devices utilizing organic and photosensitive materials. This study demonstrates that tuning the bipolarity of perovskite quantum dots (PeQDs) through Sn doping effectively modulates electron and hole trapping properties in conjugated polymer (CP)-PeQD nanocomposites, paving the way for energy-efficient neuromorphic electronics. Optimal Sn doping enhanced PeQDs' photoluminescence quantum yield and adjusted energy levels, promoting efficient electron trapping in p-type devices while reducing hole trapping in n-type systems. Integrating Sn-PeQDs with p-type CPs (diketopyrrolopyrrole-selenophene) enabled exceptional photosynaptic behaviors, such as short-term and long-term plasticity and spike-dependent plasticity. Remarkably, p-type CPs/Sn-PeQDs with optimal Sn doping achieved ultralow energy consumption of 0.169 aJ at a drain voltage of -0.1 mV with a 1 ms light pulse, significantly outperforming earlier p-type optoelectronic synapse designs. This work underscores the potential of Sn-PeQDs as a robust strategy for designing efficient, low-energy neuromorphic systems for next-generation electronics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Horizons
Materials Horizons CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
18.90
自引率
2.30%
发文量
306
审稿时长
1.3 months
期刊介绍: Materials Horizons is a leading journal in materials science that focuses on publishing exceptionally high-quality and innovative research. The journal prioritizes original research that introduces new concepts or ways of thinking, rather than solely reporting technological advancements. However, groundbreaking articles featuring record-breaking material performance may also be published. To be considered for publication, the work must be of significant interest to our community-spanning readership. Starting from 2021, all articles published in Materials Horizons will be indexed in MEDLINE©. The journal publishes various types of articles, including Communications, Reviews, Opinion pieces, Focus articles, and Comments. It serves as a core journal for researchers from academia, government, and industry across all areas of materials research. Materials Horizons is a Transformative Journal and compliant with Plan S. It has an impact factor of 13.3 and is indexed in MEDLINE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信