可逆离子液体插入石墨薄膜的电控热传递

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Pietro Steiner, Saqeeb Adnan, M. Said Ergoktas, Julien Barrier, Xiaoxiao Yu, Vicente Orts, Gokhan Bakan, Jonathan Aze, Yury Malevich, Kaiyuan Wang, Pietro Cataldi, Mark Bissett, Sinan Balci, Sefik Suzer, Marat Khafizov, Coskun Kocabas
{"title":"可逆离子液体插入石墨薄膜的电控热传递","authors":"Pietro Steiner,&nbsp;Saqeeb Adnan,&nbsp;M. Said Ergoktas,&nbsp;Julien Barrier,&nbsp;Xiaoxiao Yu,&nbsp;Vicente Orts,&nbsp;Gokhan Bakan,&nbsp;Jonathan Aze,&nbsp;Yury Malevich,&nbsp;Kaiyuan Wang,&nbsp;Pietro Cataldi,&nbsp;Mark Bissett,&nbsp;Sinan Balci,&nbsp;Sefik Suzer,&nbsp;Marat Khafizov,&nbsp;Coskun Kocabas","doi":"10.1126/sciadv.adw8588","DOIUrl":null,"url":null,"abstract":"<div >The ability to control heat transport with electrical signals has been an outstanding challenge due to the lack of efficient electrothermal materials. Previous attempts have mainly concentrated on low–thermal conductivity materials and encountered various problems such as narrow dynamic range and modest on/off ratios. Here, using high–thermal conductivity graphite films, we demonstrate an electrothermal switch enabling electrically tunable heat flow at the device level. The device uses reversible electro-intercalation of ions to modulate the in-plane thermal conductivity of graphite film by more than 13-fold via tunable phonon scattering, enabling observable modulation of the thermal conductivity at the device level. We anticipate that our results could provide a realistic pathway for adaptive thermal transport, enabling electrically driven thermal devices that would find a broad spectrum of applications in aerospace and microelectronics.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 30","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adw8588","citationCount":"0","resultStr":"{\"title\":\"Electrically controlled heat transport in graphite films via reversible ionic liquid intercalation\",\"authors\":\"Pietro Steiner,&nbsp;Saqeeb Adnan,&nbsp;M. Said Ergoktas,&nbsp;Julien Barrier,&nbsp;Xiaoxiao Yu,&nbsp;Vicente Orts,&nbsp;Gokhan Bakan,&nbsp;Jonathan Aze,&nbsp;Yury Malevich,&nbsp;Kaiyuan Wang,&nbsp;Pietro Cataldi,&nbsp;Mark Bissett,&nbsp;Sinan Balci,&nbsp;Sefik Suzer,&nbsp;Marat Khafizov,&nbsp;Coskun Kocabas\",\"doi\":\"10.1126/sciadv.adw8588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >The ability to control heat transport with electrical signals has been an outstanding challenge due to the lack of efficient electrothermal materials. Previous attempts have mainly concentrated on low–thermal conductivity materials and encountered various problems such as narrow dynamic range and modest on/off ratios. Here, using high–thermal conductivity graphite films, we demonstrate an electrothermal switch enabling electrically tunable heat flow at the device level. The device uses reversible electro-intercalation of ions to modulate the in-plane thermal conductivity of graphite film by more than 13-fold via tunable phonon scattering, enabling observable modulation of the thermal conductivity at the device level. We anticipate that our results could provide a realistic pathway for adaptive thermal transport, enabling electrically driven thermal devices that would find a broad spectrum of applications in aerospace and microelectronics.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"11 30\",\"pages\":\"\"},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2025-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.adw8588\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.adw8588\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adw8588","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

由于缺乏有效的电热材料,用电信号控制热传输的能力一直是一个突出的挑战。以往的尝试主要集中在低导热材料上,遇到了动态范围窄、开/关比适中等各种问题。在这里,使用高导热石墨薄膜,我们展示了一种电热开关,可以在器件级实现电可调热流。该器件使用可逆离子电插,通过可调声子散射,将石墨膜的平面内导热系数调制13倍以上,从而实现了在器件级可观察到的导热系数调制。我们预计,我们的研究结果可以为自适应热传输提供一条现实的途径,使电驱动的热器件能够在航空航天和微电子领域找到广泛的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Electrically controlled heat transport in graphite films via reversible ionic liquid intercalation

Electrically controlled heat transport in graphite films via reversible ionic liquid intercalation
The ability to control heat transport with electrical signals has been an outstanding challenge due to the lack of efficient electrothermal materials. Previous attempts have mainly concentrated on low–thermal conductivity materials and encountered various problems such as narrow dynamic range and modest on/off ratios. Here, using high–thermal conductivity graphite films, we demonstrate an electrothermal switch enabling electrically tunable heat flow at the device level. The device uses reversible electro-intercalation of ions to modulate the in-plane thermal conductivity of graphite film by more than 13-fold via tunable phonon scattering, enabling observable modulation of the thermal conductivity at the device level. We anticipate that our results could provide a realistic pathway for adaptive thermal transport, enabling electrically driven thermal devices that would find a broad spectrum of applications in aerospace and microelectronics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信