金属阳极可逆性与水溶液中溶剂化化学和界面电子转移的关系

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Yunpei Zhu, Simil Thomas, Tairan Wang, Xianrong Guo, Yizhou Wang, Chen Liu, S. Mani Sarathy, Xixiang Zhang, Osman M. Bakr, Omar F. Mohammed, Husam N. Alshareef
{"title":"金属阳极可逆性与水溶液中溶剂化化学和界面电子转移的关系","authors":"Yunpei Zhu,&nbsp;Simil Thomas,&nbsp;Tairan Wang,&nbsp;Xianrong Guo,&nbsp;Yizhou Wang,&nbsp;Chen Liu,&nbsp;S. Mani Sarathy,&nbsp;Xixiang Zhang,&nbsp;Osman M. Bakr,&nbsp;Omar F. Mohammed,&nbsp;Husam N. Alshareef","doi":"10.1126/sciadv.adx8413","DOIUrl":null,"url":null,"abstract":"<div >Reversible electrodeposition of metals is a crucial route to developing high-energy and rechargeable batteries. However, uncontrolled and nonplanar morphological evolution and parasitic reactions at the metal anodes are fundamental barriers to realizing full reversibility. Here, using aqueous electrochemistry as a probe, we develop multiscale characterization tools that can precisely determine the root cause of these morphological instabilities and parasitic reactions. Our analysis indicates that these issues are fundamentally from the free water molecules in aqueous electrolytes, leading to low reversibility of metal anodes. We therefore demonstrate a straightforward and effective strategy, based on modulating the solute anions in aqueous electrolytes, to suppress free water molecule concentration in conventional aqueous electrolytes. A proof of concept is demonstrated using a Zn metal anode, which shows unprecedented reversibility and stability in conventional aqueous electrolytes with structure-making anions under a harsh condition of 10 milliampere hours per square centimeter. This work unlocks an alternative angle to develop sustainable electrolytes for cost-efficient, practical battery chemistries.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 30","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adx8413","citationCount":"0","resultStr":"{\"title\":\"Correlation of metal anode reversibility with solvation chemistry and interfacial electron transfer in aqueous electrolytes\",\"authors\":\"Yunpei Zhu,&nbsp;Simil Thomas,&nbsp;Tairan Wang,&nbsp;Xianrong Guo,&nbsp;Yizhou Wang,&nbsp;Chen Liu,&nbsp;S. Mani Sarathy,&nbsp;Xixiang Zhang,&nbsp;Osman M. Bakr,&nbsp;Omar F. Mohammed,&nbsp;Husam N. Alshareef\",\"doi\":\"10.1126/sciadv.adx8413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Reversible electrodeposition of metals is a crucial route to developing high-energy and rechargeable batteries. However, uncontrolled and nonplanar morphological evolution and parasitic reactions at the metal anodes are fundamental barriers to realizing full reversibility. Here, using aqueous electrochemistry as a probe, we develop multiscale characterization tools that can precisely determine the root cause of these morphological instabilities and parasitic reactions. Our analysis indicates that these issues are fundamentally from the free water molecules in aqueous electrolytes, leading to low reversibility of metal anodes. We therefore demonstrate a straightforward and effective strategy, based on modulating the solute anions in aqueous electrolytes, to suppress free water molecule concentration in conventional aqueous electrolytes. A proof of concept is demonstrated using a Zn metal anode, which shows unprecedented reversibility and stability in conventional aqueous electrolytes with structure-making anions under a harsh condition of 10 milliampere hours per square centimeter. This work unlocks an alternative angle to develop sustainable electrolytes for cost-efficient, practical battery chemistries.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"11 30\",\"pages\":\"\"},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2025-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.adx8413\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.adx8413\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adx8413","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

金属可逆电沉积是开发高能可充电电池的重要途径。然而,不受控制的非平面形态演变和金属阳极上的寄生反应是实现完全可逆性的根本障碍。在这里,使用水电化学作为探针,我们开发了多尺度表征工具,可以精确地确定这些形态不稳定性和寄生反应的根本原因。我们的分析表明,这些问题主要来自于水电解质中的自由水分子,导致金属阳极的可逆性低。因此,我们展示了一种简单有效的策略,基于调节水性电解质中的溶质阴离子,来抑制常规水性电解质中的自由水分子浓度。使用锌金属阳极进行概念验证,在每平方厘米10毫安时的恶劣条件下,在具有结构制造阴离子的传统水性电解质中显示出前所未有的可逆性和稳定性。这项工作为开发可持续的电解质提供了另一种角度,以实现经济高效、实用的电池化学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Correlation of metal anode reversibility with solvation chemistry and interfacial electron transfer in aqueous electrolytes

Correlation of metal anode reversibility with solvation chemistry and interfacial electron transfer in aqueous electrolytes
Reversible electrodeposition of metals is a crucial route to developing high-energy and rechargeable batteries. However, uncontrolled and nonplanar morphological evolution and parasitic reactions at the metal anodes are fundamental barriers to realizing full reversibility. Here, using aqueous electrochemistry as a probe, we develop multiscale characterization tools that can precisely determine the root cause of these morphological instabilities and parasitic reactions. Our analysis indicates that these issues are fundamentally from the free water molecules in aqueous electrolytes, leading to low reversibility of metal anodes. We therefore demonstrate a straightforward and effective strategy, based on modulating the solute anions in aqueous electrolytes, to suppress free water molecule concentration in conventional aqueous electrolytes. A proof of concept is demonstrated using a Zn metal anode, which shows unprecedented reversibility and stability in conventional aqueous electrolytes with structure-making anions under a harsh condition of 10 milliampere hours per square centimeter. This work unlocks an alternative angle to develop sustainable electrolytes for cost-efficient, practical battery chemistries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信