Yunpei Zhu, Simil Thomas, Tairan Wang, Xianrong Guo, Yizhou Wang, Chen Liu, S. Mani Sarathy, Xixiang Zhang, Osman M. Bakr, Omar F. Mohammed, Husam N. Alshareef
{"title":"金属阳极可逆性与水溶液中溶剂化化学和界面电子转移的关系","authors":"Yunpei Zhu, Simil Thomas, Tairan Wang, Xianrong Guo, Yizhou Wang, Chen Liu, S. Mani Sarathy, Xixiang Zhang, Osman M. Bakr, Omar F. Mohammed, Husam N. Alshareef","doi":"10.1126/sciadv.adx8413","DOIUrl":null,"url":null,"abstract":"<div >Reversible electrodeposition of metals is a crucial route to developing high-energy and rechargeable batteries. However, uncontrolled and nonplanar morphological evolution and parasitic reactions at the metal anodes are fundamental barriers to realizing full reversibility. Here, using aqueous electrochemistry as a probe, we develop multiscale characterization tools that can precisely determine the root cause of these morphological instabilities and parasitic reactions. Our analysis indicates that these issues are fundamentally from the free water molecules in aqueous electrolytes, leading to low reversibility of metal anodes. We therefore demonstrate a straightforward and effective strategy, based on modulating the solute anions in aqueous electrolytes, to suppress free water molecule concentration in conventional aqueous electrolytes. A proof of concept is demonstrated using a Zn metal anode, which shows unprecedented reversibility and stability in conventional aqueous electrolytes with structure-making anions under a harsh condition of 10 milliampere hours per square centimeter. This work unlocks an alternative angle to develop sustainable electrolytes for cost-efficient, practical battery chemistries.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 30","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adx8413","citationCount":"0","resultStr":"{\"title\":\"Correlation of metal anode reversibility with solvation chemistry and interfacial electron transfer in aqueous electrolytes\",\"authors\":\"Yunpei Zhu, Simil Thomas, Tairan Wang, Xianrong Guo, Yizhou Wang, Chen Liu, S. Mani Sarathy, Xixiang Zhang, Osman M. Bakr, Omar F. Mohammed, Husam N. Alshareef\",\"doi\":\"10.1126/sciadv.adx8413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Reversible electrodeposition of metals is a crucial route to developing high-energy and rechargeable batteries. However, uncontrolled and nonplanar morphological evolution and parasitic reactions at the metal anodes are fundamental barriers to realizing full reversibility. Here, using aqueous electrochemistry as a probe, we develop multiscale characterization tools that can precisely determine the root cause of these morphological instabilities and parasitic reactions. Our analysis indicates that these issues are fundamentally from the free water molecules in aqueous electrolytes, leading to low reversibility of metal anodes. We therefore demonstrate a straightforward and effective strategy, based on modulating the solute anions in aqueous electrolytes, to suppress free water molecule concentration in conventional aqueous electrolytes. A proof of concept is demonstrated using a Zn metal anode, which shows unprecedented reversibility and stability in conventional aqueous electrolytes with structure-making anions under a harsh condition of 10 milliampere hours per square centimeter. This work unlocks an alternative angle to develop sustainable electrolytes for cost-efficient, practical battery chemistries.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"11 30\",\"pages\":\"\"},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2025-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.adx8413\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.adx8413\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adx8413","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Correlation of metal anode reversibility with solvation chemistry and interfacial electron transfer in aqueous electrolytes
Reversible electrodeposition of metals is a crucial route to developing high-energy and rechargeable batteries. However, uncontrolled and nonplanar morphological evolution and parasitic reactions at the metal anodes are fundamental barriers to realizing full reversibility. Here, using aqueous electrochemistry as a probe, we develop multiscale characterization tools that can precisely determine the root cause of these morphological instabilities and parasitic reactions. Our analysis indicates that these issues are fundamentally from the free water molecules in aqueous electrolytes, leading to low reversibility of metal anodes. We therefore demonstrate a straightforward and effective strategy, based on modulating the solute anions in aqueous electrolytes, to suppress free water molecule concentration in conventional aqueous electrolytes. A proof of concept is demonstrated using a Zn metal anode, which shows unprecedented reversibility and stability in conventional aqueous electrolytes with structure-making anions under a harsh condition of 10 milliampere hours per square centimeter. This work unlocks an alternative angle to develop sustainable electrolytes for cost-efficient, practical battery chemistries.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.