来自表达neurod1的星形胶质细胞的神经元通过转运扩增中间体转变,但缺乏功能成熟

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Fangbing Chen, Xi Liu, Xiaowen Zhong, Xiaoqing Chen, Eva Nicholson, Kaiyi Liu, Huiyao Chen, Yifeng Lin, Yousheng Shu, Wenhao Zhou, Carol J. Schuurmans, Q. Richard Lu
{"title":"来自表达neurod1的星形胶质细胞的神经元通过转运扩增中间体转变,但缺乏功能成熟","authors":"Fangbing Chen,&nbsp;Xi Liu,&nbsp;Xiaowen Zhong,&nbsp;Xiaoqing Chen,&nbsp;Eva Nicholson,&nbsp;Kaiyi Liu,&nbsp;Huiyao Chen,&nbsp;Yifeng Lin,&nbsp;Yousheng Shu,&nbsp;Wenhao Zhou,&nbsp;Carol J. Schuurmans,&nbsp;Q. Richard Lu","doi":"10.1126/sciadv.adw9296","DOIUrl":null,"url":null,"abstract":"<div >In vivo conversion of nonneuronal cells into neurons is a proposed strategy to replace neurons lost to CNS injury or disease. Glia-to-neuron trans-differentiation by viral vector–mediated GFAP mini-promoter–driven NeuroD1 remains hotly debated. Developing inducible, lineage-traceable transgenic mice, we find that astrocyte-to-neuron conversion is restricted to a specific time window within the lesion core of injured spinal cord and brain. Spatiotemporal lineage-mapping combined with single-cell transcriptomics reveals that ectopic NeuroD1 induces astrocyte-to-neuron conversion specifically in lesion cores via transit-amplifying OLIG2<sup>+</sup> progenitors during early injury phase, but not in late phases or in nonreactive astrocytes. Neither a loss-of-function NeuroD1 mutant nor stemness-reprogramming factor SOX2 induces astrocyte-to-neuron conversion. However, contrary to previous reports, the neuronal-like cells generated by NeuroD1 lack mature neuroelectrical properties, limiting their functional integration into neural circuits. Together, our findings establish a spatiotemporal framework for NeuroD1-driven glia-to-neuron conversion, revealing a mechanistic shift from direct astrocyte conversion toward transit-amplifying intermediates and highlighting the functional immaturity of NeuroD1-converted neurons.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 30","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adw9296","citationCount":"0","resultStr":"{\"title\":\"Neurons derived from NeuroD1-expressing astrocytes transition through transit-amplifying intermediates but lack functional maturity\",\"authors\":\"Fangbing Chen,&nbsp;Xi Liu,&nbsp;Xiaowen Zhong,&nbsp;Xiaoqing Chen,&nbsp;Eva Nicholson,&nbsp;Kaiyi Liu,&nbsp;Huiyao Chen,&nbsp;Yifeng Lin,&nbsp;Yousheng Shu,&nbsp;Wenhao Zhou,&nbsp;Carol J. Schuurmans,&nbsp;Q. Richard Lu\",\"doi\":\"10.1126/sciadv.adw9296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >In vivo conversion of nonneuronal cells into neurons is a proposed strategy to replace neurons lost to CNS injury or disease. Glia-to-neuron trans-differentiation by viral vector–mediated GFAP mini-promoter–driven NeuroD1 remains hotly debated. Developing inducible, lineage-traceable transgenic mice, we find that astrocyte-to-neuron conversion is restricted to a specific time window within the lesion core of injured spinal cord and brain. Spatiotemporal lineage-mapping combined with single-cell transcriptomics reveals that ectopic NeuroD1 induces astrocyte-to-neuron conversion specifically in lesion cores via transit-amplifying OLIG2<sup>+</sup> progenitors during early injury phase, but not in late phases or in nonreactive astrocytes. Neither a loss-of-function NeuroD1 mutant nor stemness-reprogramming factor SOX2 induces astrocyte-to-neuron conversion. However, contrary to previous reports, the neuronal-like cells generated by NeuroD1 lack mature neuroelectrical properties, limiting their functional integration into neural circuits. Together, our findings establish a spatiotemporal framework for NeuroD1-driven glia-to-neuron conversion, revealing a mechanistic shift from direct astrocyte conversion toward transit-amplifying intermediates and highlighting the functional immaturity of NeuroD1-converted neurons.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"11 30\",\"pages\":\"\"},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2025-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.adw9296\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.adw9296\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adw9296","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

体内非神经元细胞转化为神经元是一种替代因中枢神经系统损伤或疾病而失去的神经元的策略。由病毒载体介导的GFAP微启动子驱动的NeuroD1的胶质细胞到神经元的反分化仍然存在激烈的争论。通过培养可诱导的、可追溯谱系的转基因小鼠,我们发现星形胶质细胞向神经元的转化仅限于受损脊髓和大脑病变核心的特定时间窗口。时空谱系图谱结合单细胞转录组学发现,异位的NeuroD1在损伤早期通过转运扩增的OLIG2+祖细胞特异性地诱导了星形胶质细胞向神经元的转化,而在损伤晚期或无反应的星形胶质细胞中则没有。功能丧失的NeuroD1突变体和干细胞重编程因子SOX2都不能诱导星形胶质细胞向神经元的转化。然而,与之前的报道相反,由NeuroD1产生的神经元样细胞缺乏成熟的神经电特性,限制了它们与神经回路的功能整合。总之,我们的研究结果为neurod1驱动的胶质细胞到神经元的转化建立了一个时空框架,揭示了从直接星形胶质细胞转化到转运放大中间体的机制转变,并强调了neurod1转化神经元的功能不成熟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Neurons derived from NeuroD1-expressing astrocytes transition through transit-amplifying intermediates but lack functional maturity

Neurons derived from NeuroD1-expressing astrocytes transition through transit-amplifying intermediates but lack functional maturity
In vivo conversion of nonneuronal cells into neurons is a proposed strategy to replace neurons lost to CNS injury or disease. Glia-to-neuron trans-differentiation by viral vector–mediated GFAP mini-promoter–driven NeuroD1 remains hotly debated. Developing inducible, lineage-traceable transgenic mice, we find that astrocyte-to-neuron conversion is restricted to a specific time window within the lesion core of injured spinal cord and brain. Spatiotemporal lineage-mapping combined with single-cell transcriptomics reveals that ectopic NeuroD1 induces astrocyte-to-neuron conversion specifically in lesion cores via transit-amplifying OLIG2+ progenitors during early injury phase, but not in late phases or in nonreactive astrocytes. Neither a loss-of-function NeuroD1 mutant nor stemness-reprogramming factor SOX2 induces astrocyte-to-neuron conversion. However, contrary to previous reports, the neuronal-like cells generated by NeuroD1 lack mature neuroelectrical properties, limiting their functional integration into neural circuits. Together, our findings establish a spatiotemporal framework for NeuroD1-driven glia-to-neuron conversion, revealing a mechanistic shift from direct astrocyte conversion toward transit-amplifying intermediates and highlighting the functional immaturity of NeuroD1-converted neurons.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信