Xuanzhao Jiang, Jiayu Wen, Mary L. Nelson, Yasmin Dijkwel, Bradley Cairns, Uta-Maria Bauer, Gene Hart-Smith, Tatiana A. Soboleva, David J. Tremethick
{"title":"组蛋白变体H2A的非染色质调控功能。B在SWI/SNF基因组沉积","authors":"Xuanzhao Jiang, Jiayu Wen, Mary L. Nelson, Yasmin Dijkwel, Bradley Cairns, Uta-Maria Bauer, Gene Hart-Smith, Tatiana A. Soboleva, David J. Tremethick","doi":"10.1126/sciadv.adx1568","DOIUrl":null,"url":null,"abstract":"<div >The replacement of canonical histones with their variant forms enables the dynamic and context-dependent regulation of the mammalian genome. Histone variants also play key roles in various pathological processes including malignancies. Among these, the aberrant expression of the testis-specific histone variant H2A.B contributes to the pathogenesis of Hodgkin lymphoma. The multifunctionality of histone variants is regulated by their posttranslational modifications (PTMs). However, the PTMs of H2A.B and their functional implications are unknown. Here, we demonstrate that the Amino terminus of H2A.B serves as a central hub for a diverse range of gene regulatory protein-protein interactions, orchestrated by phosphorylation and arginine methylation. This includes a mechanism whereby non–chromatin-bound H2A.B associates with SWI/SNF, which limits its access to the genome. Last, we identify phosphorylated H2A.B as a previously uncharacterized marker of active RNA polymerase II transcription start sites. These findings elucidate a central role for H2A.B in genome regulation and highlight the importance of its PTMs in modulating its multifunctional roles.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 30","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adx1568","citationCount":"0","resultStr":"{\"title\":\"Nonchromatin regulatory functions of the histone variant H2A.B in SWI/SNF genomic deposition\",\"authors\":\"Xuanzhao Jiang, Jiayu Wen, Mary L. Nelson, Yasmin Dijkwel, Bradley Cairns, Uta-Maria Bauer, Gene Hart-Smith, Tatiana A. Soboleva, David J. Tremethick\",\"doi\":\"10.1126/sciadv.adx1568\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >The replacement of canonical histones with their variant forms enables the dynamic and context-dependent regulation of the mammalian genome. Histone variants also play key roles in various pathological processes including malignancies. Among these, the aberrant expression of the testis-specific histone variant H2A.B contributes to the pathogenesis of Hodgkin lymphoma. The multifunctionality of histone variants is regulated by their posttranslational modifications (PTMs). However, the PTMs of H2A.B and their functional implications are unknown. Here, we demonstrate that the Amino terminus of H2A.B serves as a central hub for a diverse range of gene regulatory protein-protein interactions, orchestrated by phosphorylation and arginine methylation. This includes a mechanism whereby non–chromatin-bound H2A.B associates with SWI/SNF, which limits its access to the genome. Last, we identify phosphorylated H2A.B as a previously uncharacterized marker of active RNA polymerase II transcription start sites. These findings elucidate a central role for H2A.B in genome regulation and highlight the importance of its PTMs in modulating its multifunctional roles.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"11 30\",\"pages\":\"\"},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2025-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.adx1568\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.adx1568\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adx1568","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Nonchromatin regulatory functions of the histone variant H2A.B in SWI/SNF genomic deposition
The replacement of canonical histones with their variant forms enables the dynamic and context-dependent regulation of the mammalian genome. Histone variants also play key roles in various pathological processes including malignancies. Among these, the aberrant expression of the testis-specific histone variant H2A.B contributes to the pathogenesis of Hodgkin lymphoma. The multifunctionality of histone variants is regulated by their posttranslational modifications (PTMs). However, the PTMs of H2A.B and their functional implications are unknown. Here, we demonstrate that the Amino terminus of H2A.B serves as a central hub for a diverse range of gene regulatory protein-protein interactions, orchestrated by phosphorylation and arginine methylation. This includes a mechanism whereby non–chromatin-bound H2A.B associates with SWI/SNF, which limits its access to the genome. Last, we identify phosphorylated H2A.B as a previously uncharacterized marker of active RNA polymerase II transcription start sites. These findings elucidate a central role for H2A.B in genome regulation and highlight the importance of its PTMs in modulating its multifunctional roles.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.