新西兰Whakaari/White岛安山岩岛火山的概率多物理场特征

IF 2.9 2区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS
C. A. Miller, F. Caratori Tontini
{"title":"新西兰Whakaari/White岛安山岩岛火山的概率多物理场特征","authors":"C. A. Miller,&nbsp;F. Caratori Tontini","doi":"10.1029/2025GC012383","DOIUrl":null,"url":null,"abstract":"<p>Collapse of hydrothermally weakened rock on the flanks of volcanic islands is a recognized cause of tsunamis generated by volcanoes. Here we use a multiphysics clustering method to derive a volcanic facies model for Whakaari/White Island, an andesite arc volcanic island in New Zealand. Through probabilistic inversion of magnetic and gravity data, combined with airborne electromagnetic data inversion we derive density, susceptibility, resistivity and saturation models of the island. Petrophysical relationships between density, P-wave velocity and mean effective stress extends the range of physical properties mapped. A clustering algorithm identifies four clusters, that is facies, related to rock volumes characterized by varying degrees of hydrothermal alteration and saturation that occupy specific spatial locations in the edifice. Two volumes of rock (0.05–0.1 km<sup>3</sup>) in the west and north of the island, with contrasting facies properties are identified as the most hydrothermally altered or fractured parts of the island. Saturation models derived from resistivity models show the upper flanks are at low saturation, reducing their likelihood of failure. The submerged flanks become progressively more saturated with depth, in line with existing models of the hydrothermal system that show significant seawater input. The gravity and magnetic models delineate subcrater boundaries and highlight regions with different styles of alteration, including pore filling that increases rock density, and rock dissolution that decreases density. The model identifies new areas of potential slope instability, context for interpreting volcano monitoring data and quantified rock volumes for generation of scenarios which simulate tsunamis caused by volcanic landslides.</p>","PeriodicalId":50422,"journal":{"name":"Geochemistry Geophysics Geosystems","volume":"26 7","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2025GC012383","citationCount":"0","resultStr":"{\"title\":\"Volcanic Facies From Probabilistic Multi-Physics Characterization of an Andesite Island Volcano, Whakaari/White Island, New Zealand\",\"authors\":\"C. A. Miller,&nbsp;F. Caratori Tontini\",\"doi\":\"10.1029/2025GC012383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Collapse of hydrothermally weakened rock on the flanks of volcanic islands is a recognized cause of tsunamis generated by volcanoes. Here we use a multiphysics clustering method to derive a volcanic facies model for Whakaari/White Island, an andesite arc volcanic island in New Zealand. Through probabilistic inversion of magnetic and gravity data, combined with airborne electromagnetic data inversion we derive density, susceptibility, resistivity and saturation models of the island. Petrophysical relationships between density, P-wave velocity and mean effective stress extends the range of physical properties mapped. A clustering algorithm identifies four clusters, that is facies, related to rock volumes characterized by varying degrees of hydrothermal alteration and saturation that occupy specific spatial locations in the edifice. Two volumes of rock (0.05–0.1 km<sup>3</sup>) in the west and north of the island, with contrasting facies properties are identified as the most hydrothermally altered or fractured parts of the island. Saturation models derived from resistivity models show the upper flanks are at low saturation, reducing their likelihood of failure. The submerged flanks become progressively more saturated with depth, in line with existing models of the hydrothermal system that show significant seawater input. The gravity and magnetic models delineate subcrater boundaries and highlight regions with different styles of alteration, including pore filling that increases rock density, and rock dissolution that decreases density. The model identifies new areas of potential slope instability, context for interpreting volcano monitoring data and quantified rock volumes for generation of scenarios which simulate tsunamis caused by volcanic landslides.</p>\",\"PeriodicalId\":50422,\"journal\":{\"name\":\"Geochemistry Geophysics Geosystems\",\"volume\":\"26 7\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2025GC012383\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geochemistry Geophysics Geosystems\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2025GC012383\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemistry Geophysics Geosystems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2025GC012383","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

火山岛两侧热液作用减弱的岩石崩塌是火山引发海啸的公认原因。本文采用多物理场聚类方法建立了新西兰安山岩弧火山岛Whakaari/White Island的火山相模型。通过磁重数据的概率反演,结合航空电磁数据反演,导出了海岛的密度、磁化率、电阻率和饱和度模型。密度、纵波速度和平均有效应力之间的岩石物理关系扩展了所映射的物性范围。聚类算法识别出四个簇,即相,它们与岩石体积有关,其特征是不同程度的热液蚀变和饱和度,它们占据了大厦中的特定空间位置。在岛的西部和北部有两块岩石(0.05-0.1 km3),它们的相性质对比鲜明,被认为是岛上热液蚀变或断裂最严重的部分。由电阻率模型导出的饱和模型显示,上侧翼处于低饱和状态,降低了其破坏的可能性。被淹没的侧翼随着深度的增加逐渐变得更加饱和,这与现有的热液系统模型一致,后者显示出明显的海水输入。重磁模型圈定了坑下边界,突出了不同蚀变类型的区域,包括孔隙填充增加岩石密度和岩石溶蚀降低密度。该模型确定了潜在斜坡不稳定的新区域,解释火山监测数据的背景,并为模拟火山滑坡引起的海啸的情景生成量化的岩石体积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Volcanic Facies From Probabilistic Multi-Physics Characterization of an Andesite Island Volcano, Whakaari/White Island, New Zealand

Volcanic Facies From Probabilistic Multi-Physics Characterization of an Andesite Island Volcano, Whakaari/White Island, New Zealand

Collapse of hydrothermally weakened rock on the flanks of volcanic islands is a recognized cause of tsunamis generated by volcanoes. Here we use a multiphysics clustering method to derive a volcanic facies model for Whakaari/White Island, an andesite arc volcanic island in New Zealand. Through probabilistic inversion of magnetic and gravity data, combined with airborne electromagnetic data inversion we derive density, susceptibility, resistivity and saturation models of the island. Petrophysical relationships between density, P-wave velocity and mean effective stress extends the range of physical properties mapped. A clustering algorithm identifies four clusters, that is facies, related to rock volumes characterized by varying degrees of hydrothermal alteration and saturation that occupy specific spatial locations in the edifice. Two volumes of rock (0.05–0.1 km3) in the west and north of the island, with contrasting facies properties are identified as the most hydrothermally altered or fractured parts of the island. Saturation models derived from resistivity models show the upper flanks are at low saturation, reducing their likelihood of failure. The submerged flanks become progressively more saturated with depth, in line with existing models of the hydrothermal system that show significant seawater input. The gravity and magnetic models delineate subcrater boundaries and highlight regions with different styles of alteration, including pore filling that increases rock density, and rock dissolution that decreases density. The model identifies new areas of potential slope instability, context for interpreting volcano monitoring data and quantified rock volumes for generation of scenarios which simulate tsunamis caused by volcanic landslides.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geochemistry Geophysics Geosystems
Geochemistry Geophysics Geosystems 地学-地球化学与地球物理
CiteScore
5.90
自引率
11.40%
发文量
252
审稿时长
1 months
期刊介绍: Geochemistry, Geophysics, Geosystems (G3) publishes research papers on Earth and planetary processes with a focus on understanding the Earth as a system. Observational, experimental, and theoretical investigations of the solid Earth, hydrosphere, atmosphere, biosphere, and solar system at all spatial and temporal scales are welcome. Articles should be of broad interest, and interdisciplinary approaches are encouraged. Areas of interest for this peer-reviewed journal include, but are not limited to: The physics and chemistry of the Earth, including its structure, composition, physical properties, dynamics, and evolution Principles and applications of geochemical proxies to studies of Earth history The physical properties, composition, and temporal evolution of the Earth''s major reservoirs and the coupling between them The dynamics of geochemical and biogeochemical cycles at all spatial and temporal scales Physical and cosmochemical constraints on the composition, origin, and evolution of the Earth and other terrestrial planets The chemistry and physics of solar system materials that are relevant to the formation, evolution, and current state of the Earth and the planets Advances in modeling, observation, and experimentation that are of widespread interest in the geosciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信