{"title":"CLEVER:基于流的主动学习,从人类指令中获得健壮的语义感知","authors":"Jongseok Lee;Timo Birr;Rudolph Triebel;Tamim Asfour","doi":"10.1109/LRA.2025.3588387","DOIUrl":null,"url":null,"abstract":"We propose CLEVER, an active learning system for robust semantic perception with Deep Neural Networks (DNNs). For data arriving in streams, our system seeks human support when encountering failures and adapts DNNs online based on human instructions. In this way, CLEVER can eventually accomplish the given semantic perception tasks. Our main contribution is the design of a system that meets several desiderata of realizing the aforementioned capabilities. The key enabler herein is our Bayesian formulation that encodes domain knowledge through priors. Empirically, we not only motivate CLEVER's design but further demonstrate its capabilities with a user validation study as well as experiments on humanoid and deformable objects. To our knowledge, we are the first to realize stream-based active learning on a real robot, providing evidence that the robustness of the DNN-based semantic perception can be improved in practice.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 9","pages":"8906-8913"},"PeriodicalIF":5.3000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CLEVER: Stream-Based Active Learning for Robust Semantic Perception From Human Instructions\",\"authors\":\"Jongseok Lee;Timo Birr;Rudolph Triebel;Tamim Asfour\",\"doi\":\"10.1109/LRA.2025.3588387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose CLEVER, an active learning system for robust semantic perception with Deep Neural Networks (DNNs). For data arriving in streams, our system seeks human support when encountering failures and adapts DNNs online based on human instructions. In this way, CLEVER can eventually accomplish the given semantic perception tasks. Our main contribution is the design of a system that meets several desiderata of realizing the aforementioned capabilities. The key enabler herein is our Bayesian formulation that encodes domain knowledge through priors. Empirically, we not only motivate CLEVER's design but further demonstrate its capabilities with a user validation study as well as experiments on humanoid and deformable objects. To our knowledge, we are the first to realize stream-based active learning on a real robot, providing evidence that the robustness of the DNN-based semantic perception can be improved in practice.\",\"PeriodicalId\":13241,\"journal\":{\"name\":\"IEEE Robotics and Automation Letters\",\"volume\":\"10 9\",\"pages\":\"8906-8913\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Robotics and Automation Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11078143/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11078143/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
CLEVER: Stream-Based Active Learning for Robust Semantic Perception From Human Instructions
We propose CLEVER, an active learning system for robust semantic perception with Deep Neural Networks (DNNs). For data arriving in streams, our system seeks human support when encountering failures and adapts DNNs online based on human instructions. In this way, CLEVER can eventually accomplish the given semantic perception tasks. Our main contribution is the design of a system that meets several desiderata of realizing the aforementioned capabilities. The key enabler herein is our Bayesian formulation that encodes domain knowledge through priors. Empirically, we not only motivate CLEVER's design but further demonstrate its capabilities with a user validation study as well as experiments on humanoid and deformable objects. To our knowledge, we are the first to realize stream-based active learning on a real robot, providing evidence that the robustness of the DNN-based semantic perception can be improved in practice.
期刊介绍:
The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.