CLEVER:基于流的主动学习,从人类指令中获得健壮的语义感知

IF 5.3 2区 计算机科学 Q2 ROBOTICS
Jongseok Lee;Timo Birr;Rudolph Triebel;Tamim Asfour
{"title":"CLEVER:基于流的主动学习,从人类指令中获得健壮的语义感知","authors":"Jongseok Lee;Timo Birr;Rudolph Triebel;Tamim Asfour","doi":"10.1109/LRA.2025.3588387","DOIUrl":null,"url":null,"abstract":"We propose CLEVER, an active learning system for robust semantic perception with Deep Neural Networks (DNNs). For data arriving in streams, our system seeks human support when encountering failures and adapts DNNs online based on human instructions. In this way, CLEVER can eventually accomplish the given semantic perception tasks. Our main contribution is the design of a system that meets several desiderata of realizing the aforementioned capabilities. The key enabler herein is our Bayesian formulation that encodes domain knowledge through priors. Empirically, we not only motivate CLEVER's design but further demonstrate its capabilities with a user validation study as well as experiments on humanoid and deformable objects. To our knowledge, we are the first to realize stream-based active learning on a real robot, providing evidence that the robustness of the DNN-based semantic perception can be improved in practice.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 9","pages":"8906-8913"},"PeriodicalIF":5.3000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CLEVER: Stream-Based Active Learning for Robust Semantic Perception From Human Instructions\",\"authors\":\"Jongseok Lee;Timo Birr;Rudolph Triebel;Tamim Asfour\",\"doi\":\"10.1109/LRA.2025.3588387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose CLEVER, an active learning system for robust semantic perception with Deep Neural Networks (DNNs). For data arriving in streams, our system seeks human support when encountering failures and adapts DNNs online based on human instructions. In this way, CLEVER can eventually accomplish the given semantic perception tasks. Our main contribution is the design of a system that meets several desiderata of realizing the aforementioned capabilities. The key enabler herein is our Bayesian formulation that encodes domain knowledge through priors. Empirically, we not only motivate CLEVER's design but further demonstrate its capabilities with a user validation study as well as experiments on humanoid and deformable objects. To our knowledge, we are the first to realize stream-based active learning on a real robot, providing evidence that the robustness of the DNN-based semantic perception can be improved in practice.\",\"PeriodicalId\":13241,\"journal\":{\"name\":\"IEEE Robotics and Automation Letters\",\"volume\":\"10 9\",\"pages\":\"8906-8913\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Robotics and Automation Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11078143/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11078143/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了CLEVER,一个基于深度神经网络(dnn)的鲁棒语义感知主动学习系统。对于到达流中的数据,我们的系统在遇到故障时寻求人类的支持,并根据人类的指令在线适应dnn。通过这种方式,CLEVER最终可以完成给定的语义感知任务。我们的主要贡献是设计一个满足实现上述功能的几个需求的系统。这里的关键促成因素是我们的贝叶斯公式,它通过先验对领域知识进行编码。根据经验,我们不仅激发了CLEVER的设计,而且通过用户验证研究以及人形和可变形物体的实验进一步证明了它的能力。据我们所知,我们是第一个在真实机器人上实现基于流的主动学习的,这证明了基于dnn的语义感知的鲁棒性可以在实践中得到提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CLEVER: Stream-Based Active Learning for Robust Semantic Perception From Human Instructions
We propose CLEVER, an active learning system for robust semantic perception with Deep Neural Networks (DNNs). For data arriving in streams, our system seeks human support when encountering failures and adapts DNNs online based on human instructions. In this way, CLEVER can eventually accomplish the given semantic perception tasks. Our main contribution is the design of a system that meets several desiderata of realizing the aforementioned capabilities. The key enabler herein is our Bayesian formulation that encodes domain knowledge through priors. Empirically, we not only motivate CLEVER's design but further demonstrate its capabilities with a user validation study as well as experiments on humanoid and deformable objects. To our knowledge, we are the first to realize stream-based active learning on a real robot, providing evidence that the robustness of the DNN-based semantic perception can be improved in practice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信