通过实验和机器学习控制地聚合物珊瑚骨料混凝土的性能和碱度

IF 9.2 2区 工程技术 Q1 ENERGY & FUELS
Hongbin Pan , Bai Zhang , Jiji Cao , Zhiyuan Yang , Jixuan Chen , Xingkai Zhao , Hui Peng
{"title":"通过实验和机器学习控制地聚合物珊瑚骨料混凝土的性能和碱度","authors":"Hongbin Pan ,&nbsp;Bai Zhang ,&nbsp;Jiji Cao ,&nbsp;Zhiyuan Yang ,&nbsp;Jixuan Chen ,&nbsp;Xingkai Zhao ,&nbsp;Hui Peng","doi":"10.1016/j.susmat.2025.e01555","DOIUrl":null,"url":null,"abstract":"<div><div>In ocean engineering, the combination of coral aggregate concrete (CAC) and fiber-reinforced polymer (FRP) composites offers potential for cost-effective, durable structures. However, the highly alkaline environment of cement-based matrices degrades FRP composites via resin hydrolysis, leading to performance deterioration of FRP-reinforced concrete structures. To address this challenge, fly ash-slag composite geopolymers were utilized to develop low-alkalinity geopolymer coral aggregate concrete (GPCAC). A systematic analysis was conducted to evaluate the effects of alkaline dosage and slag/fly ash ratio on the mechanical properties, microstructures, and pore solution alkalinity of GPCAC. The results revealed that increasing the alkali dosage from 4 % to 10 % enhanced the 28-day compressive strength by 33.64 MPa and splitting tensile strength by 2.72 MPa, whereas raising slag content from 30 % to 70 % boosted these strengths by 11.11 MPa and 0.71 MPa, respectively. At 7 days, GPCAC specimens with 10 % alkaline content exhibited a 0.47-unit higher pH value than the 4 % alkali group, and specimens with 70 % slag achieved a 0.25-unit pH increase over the 30 % slag group. However, these disparities diminished by 28 days. Notably, the pore solution pH of GPCAC measured 0.13–0.48 units lower than cement-based CAC, creating a low-alkalinity environment advantageous for mitigating FRP composite degradation. In addition, GPCAC exhibited a higher gel pore proportion than CAC, and optimizing alkali and slag content further increased gel porosity, yielding a denser matrix. An optimal pore structure was achieved with a 6 % alkali dosage and 50 % slag content, with gel pores accounting for 51.42 %, which was 2.15 times that of cement-based CAC. Ultimately, a snake optimization algorithm-enhanced random forest model accurately predicted GPCAC compressive strength with a prediction error below 5 %.</div></div>","PeriodicalId":22097,"journal":{"name":"Sustainable Materials and Technologies","volume":"45 ","pages":"Article e01555"},"PeriodicalIF":9.2000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance and alkalinity control in geopolymer coral aggregate concrete via experiments and machine learning\",\"authors\":\"Hongbin Pan ,&nbsp;Bai Zhang ,&nbsp;Jiji Cao ,&nbsp;Zhiyuan Yang ,&nbsp;Jixuan Chen ,&nbsp;Xingkai Zhao ,&nbsp;Hui Peng\",\"doi\":\"10.1016/j.susmat.2025.e01555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In ocean engineering, the combination of coral aggregate concrete (CAC) and fiber-reinforced polymer (FRP) composites offers potential for cost-effective, durable structures. However, the highly alkaline environment of cement-based matrices degrades FRP composites via resin hydrolysis, leading to performance deterioration of FRP-reinforced concrete structures. To address this challenge, fly ash-slag composite geopolymers were utilized to develop low-alkalinity geopolymer coral aggregate concrete (GPCAC). A systematic analysis was conducted to evaluate the effects of alkaline dosage and slag/fly ash ratio on the mechanical properties, microstructures, and pore solution alkalinity of GPCAC. The results revealed that increasing the alkali dosage from 4 % to 10 % enhanced the 28-day compressive strength by 33.64 MPa and splitting tensile strength by 2.72 MPa, whereas raising slag content from 30 % to 70 % boosted these strengths by 11.11 MPa and 0.71 MPa, respectively. At 7 days, GPCAC specimens with 10 % alkaline content exhibited a 0.47-unit higher pH value than the 4 % alkali group, and specimens with 70 % slag achieved a 0.25-unit pH increase over the 30 % slag group. However, these disparities diminished by 28 days. Notably, the pore solution pH of GPCAC measured 0.13–0.48 units lower than cement-based CAC, creating a low-alkalinity environment advantageous for mitigating FRP composite degradation. In addition, GPCAC exhibited a higher gel pore proportion than CAC, and optimizing alkali and slag content further increased gel porosity, yielding a denser matrix. An optimal pore structure was achieved with a 6 % alkali dosage and 50 % slag content, with gel pores accounting for 51.42 %, which was 2.15 times that of cement-based CAC. Ultimately, a snake optimization algorithm-enhanced random forest model accurately predicted GPCAC compressive strength with a prediction error below 5 %.</div></div>\",\"PeriodicalId\":22097,\"journal\":{\"name\":\"Sustainable Materials and Technologies\",\"volume\":\"45 \",\"pages\":\"Article e01555\"},\"PeriodicalIF\":9.2000,\"publicationDate\":\"2025-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Materials and Technologies\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214993725003239\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Materials and Technologies","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214993725003239","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

在海洋工程中,珊瑚骨料混凝土(CAC)和纤维增强聚合物(FRP)复合材料的组合为经济高效、耐用的结构提供了潜力。然而,水泥基基体的高碱性环境通过树脂水解降解FRP复合材料,导致FRP增强混凝土结构性能下降。为了解决这一问题,粉煤灰-矿渣复合地聚合物被用于开发低碱度地聚合物珊瑚骨料混凝土(GPCAC)。系统分析了碱用量和渣灰比对GPCAC力学性能、微观结构和孔隙溶液碱度的影响。结果表明,碱掺量从4%增加到10%,28天抗压强度提高33.64 MPa,劈裂抗拉强度提高2.72 MPa;矿渣掺量从30%增加到70%,28天抗压强度分别提高11.11 MPa和0.71 MPa。第7天,碱性含量为10%的GPCAC试样的pH值比碱性含量为4%的GPCAC试样的pH值高0.47个单位,矿渣含量为70%的GPCAC试样的pH值比矿渣含量为30%的GPCAC试样的pH值高0.25个单位。然而,这些差异在28天内缩小了。值得注意的是,GPCAC的孔隙溶液pH值比水泥基CAC低0.13-0.48个单位,创造了有利于减缓FRP复合材料降解的低碱度环境。此外,GPCAC的凝胶孔隙比CAC高,碱和渣含量的优化进一步提高了凝胶孔隙率,得到了更致密的基质。当碱掺量为6%、矿渣掺量为50%时,凝胶孔隙占比达到51.42%,是水泥基CAC的2.15倍。最终,蛇优化算法增强的随机森林模型准确预测了GPCAC抗压强度,预测误差低于5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Performance and alkalinity control in geopolymer coral aggregate concrete via experiments and machine learning

Performance and alkalinity control in geopolymer coral aggregate concrete via experiments and machine learning
In ocean engineering, the combination of coral aggregate concrete (CAC) and fiber-reinforced polymer (FRP) composites offers potential for cost-effective, durable structures. However, the highly alkaline environment of cement-based matrices degrades FRP composites via resin hydrolysis, leading to performance deterioration of FRP-reinforced concrete structures. To address this challenge, fly ash-slag composite geopolymers were utilized to develop low-alkalinity geopolymer coral aggregate concrete (GPCAC). A systematic analysis was conducted to evaluate the effects of alkaline dosage and slag/fly ash ratio on the mechanical properties, microstructures, and pore solution alkalinity of GPCAC. The results revealed that increasing the alkali dosage from 4 % to 10 % enhanced the 28-day compressive strength by 33.64 MPa and splitting tensile strength by 2.72 MPa, whereas raising slag content from 30 % to 70 % boosted these strengths by 11.11 MPa and 0.71 MPa, respectively. At 7 days, GPCAC specimens with 10 % alkaline content exhibited a 0.47-unit higher pH value than the 4 % alkali group, and specimens with 70 % slag achieved a 0.25-unit pH increase over the 30 % slag group. However, these disparities diminished by 28 days. Notably, the pore solution pH of GPCAC measured 0.13–0.48 units lower than cement-based CAC, creating a low-alkalinity environment advantageous for mitigating FRP composite degradation. In addition, GPCAC exhibited a higher gel pore proportion than CAC, and optimizing alkali and slag content further increased gel porosity, yielding a denser matrix. An optimal pore structure was achieved with a 6 % alkali dosage and 50 % slag content, with gel pores accounting for 51.42 %, which was 2.15 times that of cement-based CAC. Ultimately, a snake optimization algorithm-enhanced random forest model accurately predicted GPCAC compressive strength with a prediction error below 5 %.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sustainable Materials and Technologies
Sustainable Materials and Technologies Energy-Renewable Energy, Sustainability and the Environment
CiteScore
13.40
自引率
4.20%
发文量
158
审稿时长
45 days
期刊介绍: Sustainable Materials and Technologies (SM&T), an international, cross-disciplinary, fully open access journal published by Elsevier, focuses on original full-length research articles and reviews. It covers applied or fundamental science of nano-, micro-, meso-, and macro-scale aspects of materials and technologies for sustainable development. SM&T gives special attention to contributions that bridge the knowledge gap between materials and system designs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信