{"title":"包含非局部和表面效应的多孔机械超材料结构的构型多尺度方法","authors":"Yi Jiao, Shuo Li, Li Li","doi":"10.1016/j.ijengsci.2025.104354","DOIUrl":null,"url":null,"abstract":"<div><div>Metamaterials exhibit counterintuitive mechanical behaviors that derive from their artificial mesostructural configuration rather than the mechanical properties of each individual component. However, classical multiscale homogenization methods cannot capture the counterintuitive mechanical behaviors. This paper explores the role of mesoscopic configurations on the counterintuitive mechanical behavior of porous mechanical metamaterial structures, attributing the observed effects to nonlocal and surface effects arising from the configurations. A configuration-enabled multiscale method incorporating nonlocal and surface effects is proposed for porous mechanical metamaterial structures to efficiently and accurately forecast the configuration-induced nonlocal and surface effects. In the mesoscale, a variable-thickness representative volume element (RVE) is constructed; based on the variable-thickness RVE, the intrinsic length parameters of nonlocal and surface effects are calibrated for different configurations, thereby constructing an offline dataset. In the macroscale, porous mechanical metamaterial structures are modeled as homogenization structures incorporating nonlocal and surface effects, and the closed-form solution of displacements is derived for porous mechanical metamaterial bars. With the help of the offline dataset of the intrinsic length parameters and the closed-form solution of displacements, the performance of the proposed configuration-enabled multiscale approach, evaluated in terms of accuracy and computational efficiency, is directly compared to a high-fidelity finite element method (FEM) that fully solves the mesoscopic structural configuration. Results indicate that the configuration-enabled multiscale method incorporating nonlocal and surface effects not only offers an accurate representation of the multiscale architecture, significantly outperforming the classical multiscale homogenization approach, but also significantly reduces the computational efficiency of the high-fidelity FEM.</div></div>","PeriodicalId":14053,"journal":{"name":"International Journal of Engineering Science","volume":"217 ","pages":"Article 104354"},"PeriodicalIF":5.7000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A configuration-enabled multiscale method for porous mechanical metamaterial structures incorporating nonlocal and surface effects\",\"authors\":\"Yi Jiao, Shuo Li, Li Li\",\"doi\":\"10.1016/j.ijengsci.2025.104354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Metamaterials exhibit counterintuitive mechanical behaviors that derive from their artificial mesostructural configuration rather than the mechanical properties of each individual component. However, classical multiscale homogenization methods cannot capture the counterintuitive mechanical behaviors. This paper explores the role of mesoscopic configurations on the counterintuitive mechanical behavior of porous mechanical metamaterial structures, attributing the observed effects to nonlocal and surface effects arising from the configurations. A configuration-enabled multiscale method incorporating nonlocal and surface effects is proposed for porous mechanical metamaterial structures to efficiently and accurately forecast the configuration-induced nonlocal and surface effects. In the mesoscale, a variable-thickness representative volume element (RVE) is constructed; based on the variable-thickness RVE, the intrinsic length parameters of nonlocal and surface effects are calibrated for different configurations, thereby constructing an offline dataset. In the macroscale, porous mechanical metamaterial structures are modeled as homogenization structures incorporating nonlocal and surface effects, and the closed-form solution of displacements is derived for porous mechanical metamaterial bars. With the help of the offline dataset of the intrinsic length parameters and the closed-form solution of displacements, the performance of the proposed configuration-enabled multiscale approach, evaluated in terms of accuracy and computational efficiency, is directly compared to a high-fidelity finite element method (FEM) that fully solves the mesoscopic structural configuration. Results indicate that the configuration-enabled multiscale method incorporating nonlocal and surface effects not only offers an accurate representation of the multiscale architecture, significantly outperforming the classical multiscale homogenization approach, but also significantly reduces the computational efficiency of the high-fidelity FEM.</div></div>\",\"PeriodicalId\":14053,\"journal\":{\"name\":\"International Journal of Engineering Science\",\"volume\":\"217 \",\"pages\":\"Article 104354\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Engineering Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020722525001417\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020722525001417","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
A configuration-enabled multiscale method for porous mechanical metamaterial structures incorporating nonlocal and surface effects
Metamaterials exhibit counterintuitive mechanical behaviors that derive from their artificial mesostructural configuration rather than the mechanical properties of each individual component. However, classical multiscale homogenization methods cannot capture the counterintuitive mechanical behaviors. This paper explores the role of mesoscopic configurations on the counterintuitive mechanical behavior of porous mechanical metamaterial structures, attributing the observed effects to nonlocal and surface effects arising from the configurations. A configuration-enabled multiscale method incorporating nonlocal and surface effects is proposed for porous mechanical metamaterial structures to efficiently and accurately forecast the configuration-induced nonlocal and surface effects. In the mesoscale, a variable-thickness representative volume element (RVE) is constructed; based on the variable-thickness RVE, the intrinsic length parameters of nonlocal and surface effects are calibrated for different configurations, thereby constructing an offline dataset. In the macroscale, porous mechanical metamaterial structures are modeled as homogenization structures incorporating nonlocal and surface effects, and the closed-form solution of displacements is derived for porous mechanical metamaterial bars. With the help of the offline dataset of the intrinsic length parameters and the closed-form solution of displacements, the performance of the proposed configuration-enabled multiscale approach, evaluated in terms of accuracy and computational efficiency, is directly compared to a high-fidelity finite element method (FEM) that fully solves the mesoscopic structural configuration. Results indicate that the configuration-enabled multiscale method incorporating nonlocal and surface effects not only offers an accurate representation of the multiscale architecture, significantly outperforming the classical multiscale homogenization approach, but also significantly reduces the computational efficiency of the high-fidelity FEM.
期刊介绍:
The International Journal of Engineering Science is not limited to a specific aspect of science and engineering but is instead devoted to a wide range of subfields in the engineering sciences. While it encourages a broad spectrum of contribution in the engineering sciences, its core interest lies in issues concerning material modeling and response. Articles of interdisciplinary nature are particularly welcome.
The primary goal of the new editors is to maintain high quality of publications. There will be a commitment to expediting the time taken for the publication of the papers. The articles that are sent for reviews will have names of the authors deleted with a view towards enhancing the objectivity and fairness of the review process.
Articles that are devoted to the purely mathematical aspects without a discussion of the physical implications of the results or the consideration of specific examples are discouraged. Articles concerning material science should not be limited merely to a description and recording of observations but should contain theoretical or quantitative discussion of the results.