离子注入固体电解质中断裂和离子电导率变化的映射:来自分子动力学的见解

IF 7.9 2区 工程技术 Q1 CHEMISTRY, PHYSICAL
Scott Q. Monismith , Josefine D. McBrayer , Rémi Dingreville
{"title":"离子注入固体电解质中断裂和离子电导率变化的映射:来自分子动力学的见解","authors":"Scott Q. Monismith ,&nbsp;Josefine D. McBrayer ,&nbsp;Rémi Dingreville","doi":"10.1016/j.jpowsour.2025.237881","DOIUrl":null,"url":null,"abstract":"<div><div>Ion implantation emerges as a promising technique to address the persistent challenge of lithium (Li) filament growth in solid-state electrolytes as it can induce compressive stresses inhibiting crack growth and deflect dendrites, <em>de facto</em> mitigating early electrolyte failure. In this study, we examine the potential paradox of ion implantation: while aiming to enhance electrolyte performance, the radiation damage associated with implantation might inadvertently compromise both the ionic conductivity and the intrinsic fracture toughness of the material, rendering the material unsuitable for battery applications. Specifically, we employed molecular dynamics simulations to examine the scope of the downsides of ion implantation, specifically: (i) reduced ionic conductivity (due to radiation-induced amorphization) and (ii) mechanical stability (due to radiation-induced embrittlement) in ion-implanted Li<span><math><msub><mrow></mrow><mrow><mn>7</mn></mrow></msub></math></span>La<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>Zr<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<sub>12</sub> (LLZO) solid-state electrolytes. We explore how radiation damage impacts LLZO’s crystalline structure, Li-ion diffusion, and fracture properties at various temperatures and radiation damage levels. The study aims to provide insights into the competing effects of ion implantation and suggest potential engineering strategies for developing more robust solid-state electrolytes with improved conductivity and dendrite resistance.</div></div>","PeriodicalId":377,"journal":{"name":"Journal of Power Sources","volume":"655 ","pages":"Article 237881"},"PeriodicalIF":7.9000,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mapping of fracture and ionic conductivity changes in ion implanted solid electrolytes: Insights from molecular dynamics\",\"authors\":\"Scott Q. Monismith ,&nbsp;Josefine D. McBrayer ,&nbsp;Rémi Dingreville\",\"doi\":\"10.1016/j.jpowsour.2025.237881\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ion implantation emerges as a promising technique to address the persistent challenge of lithium (Li) filament growth in solid-state electrolytes as it can induce compressive stresses inhibiting crack growth and deflect dendrites, <em>de facto</em> mitigating early electrolyte failure. In this study, we examine the potential paradox of ion implantation: while aiming to enhance electrolyte performance, the radiation damage associated with implantation might inadvertently compromise both the ionic conductivity and the intrinsic fracture toughness of the material, rendering the material unsuitable for battery applications. Specifically, we employed molecular dynamics simulations to examine the scope of the downsides of ion implantation, specifically: (i) reduced ionic conductivity (due to radiation-induced amorphization) and (ii) mechanical stability (due to radiation-induced embrittlement) in ion-implanted Li<span><math><msub><mrow></mrow><mrow><mn>7</mn></mrow></msub></math></span>La<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>Zr<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<sub>12</sub> (LLZO) solid-state electrolytes. We explore how radiation damage impacts LLZO’s crystalline structure, Li-ion diffusion, and fracture properties at various temperatures and radiation damage levels. The study aims to provide insights into the competing effects of ion implantation and suggest potential engineering strategies for developing more robust solid-state electrolytes with improved conductivity and dendrite resistance.</div></div>\",\"PeriodicalId\":377,\"journal\":{\"name\":\"Journal of Power Sources\",\"volume\":\"655 \",\"pages\":\"Article 237881\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2025-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Power Sources\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378775325017173\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378775325017173","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

离子注入是一种很有前途的技术,可以解决固态电解质中锂(Li)灯丝生长的持续挑战,因为它可以诱导压缩应力,抑制裂纹生长和偏斜枝晶,事实上减轻了早期电解质失效。在这项研究中,我们研究了离子注入的潜在悖论:在旨在提高电解质性能的同时,与离子注入相关的辐射损伤可能会无意中损害离子电导率和材料的固有断裂韧性,使材料不适合电池应用。具体来说,我们采用分子动力学模拟来检查离子注入的不利影响范围,特别是:(i)离子注入Li7La3Zr2O12 (LLZO)固态电解质的离子电导率降低(由于辐射诱导的非晶化)和(ii)机械稳定性(由于辐射诱导的脆化)。研究了辐射损伤在不同温度和辐射损伤水平下对LLZO晶体结构、锂离子扩散和断裂性能的影响。该研究旨在深入了解离子注入的竞争效应,并为开发具有更高导电性和枝晶电阻的更坚固的固态电解质提供潜在的工程策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Mapping of fracture and ionic conductivity changes in ion implanted solid electrolytes: Insights from molecular dynamics

Mapping of fracture and ionic conductivity changes in ion implanted solid electrolytes: Insights from molecular dynamics
Ion implantation emerges as a promising technique to address the persistent challenge of lithium (Li) filament growth in solid-state electrolytes as it can induce compressive stresses inhibiting crack growth and deflect dendrites, de facto mitigating early electrolyte failure. In this study, we examine the potential paradox of ion implantation: while aiming to enhance electrolyte performance, the radiation damage associated with implantation might inadvertently compromise both the ionic conductivity and the intrinsic fracture toughness of the material, rendering the material unsuitable for battery applications. Specifically, we employed molecular dynamics simulations to examine the scope of the downsides of ion implantation, specifically: (i) reduced ionic conductivity (due to radiation-induced amorphization) and (ii) mechanical stability (due to radiation-induced embrittlement) in ion-implanted Li7La3Zr2O12 (LLZO) solid-state electrolytes. We explore how radiation damage impacts LLZO’s crystalline structure, Li-ion diffusion, and fracture properties at various temperatures and radiation damage levels. The study aims to provide insights into the competing effects of ion implantation and suggest potential engineering strategies for developing more robust solid-state electrolytes with improved conductivity and dendrite resistance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Power Sources
Journal of Power Sources 工程技术-电化学
CiteScore
16.40
自引率
6.50%
发文量
1249
审稿时长
36 days
期刊介绍: The Journal of Power Sources is a publication catering to researchers and technologists interested in various aspects of the science, technology, and applications of electrochemical power sources. It covers original research and reviews on primary and secondary batteries, fuel cells, supercapacitors, and photo-electrochemical cells. Topics considered include the research, development and applications of nanomaterials and novel componentry for these devices. Examples of applications of these electrochemical power sources include: • Portable electronics • Electric and Hybrid Electric Vehicles • Uninterruptible Power Supply (UPS) systems • Storage of renewable energy • Satellites and deep space probes • Boats and ships, drones and aircrafts • Wearable energy storage systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信